Abstract
Fluorescence in situ hybridization (FISH) using two cosmid probes (41A and P13) from the Miller-Dieker syndrome (MDS) critical region in 17p13.3 was performed in a blinded comparison of three MDS patients with submicroscopic deletions and in four normal relatives used as controls. The controls showed both chromosome 17 homologues labeled in 85%-95% of cells, while each patient showed only one homologue labeled in 75%-80% of cells. Two MDS patients with cryptic translocations were also studied. In one case, a patient and her mother had the same der(17) (p+), but the reciprocal product of the translocation could not be identified in the mother by G-banding (i.e., it was a "half-cryptic" translocation). FISH revealed a 3q;17p translocation. The other case involved a patient with apparently normal karyotype. Because a large molecular deletion was found, a translocation involving two G-negative telomeres (i.e., a "full-cryptic" translocation) was postulated. FISH studies on her father and normal brother showed an 8q;17p translocation. These studies demonstrate that in situ hybridization is an efficient method for deletion detection in Miller-Dieker syndrome. More important, parental studies by FISH on patients demonstrating molecular deletions and a normal karyotype may identify cryptic translocation events, which cannot be detected by other molecular genetic strategies. Similar in situ strategies for deletion detection can be developed for other microdeletion syndromes, such as Prader-Willi/Angelman syndrome or DiGeorge syndrome.
Full text
PDF![707](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bd/1683159/b6c03879c4ee/ajhg00081-0015.png)
![708](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bd/1683159/f82fd7e19ae7/ajhg00081-0016.png)
![709](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bd/1683159/aa1779033bc1/ajhg00081-0017.png)
![710](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bd/1683159/9227d57e57f0/ajhg00081-0018.png)
![711](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bd/1683159/4f66cd1533a9/ajhg00081-0019.png)
![712](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bd/1683159/50b8f18c1852/ajhg00081-0020.png)
![713](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bd/1683159/fd8c853e6a03/ajhg00081-0021.png)
![714](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bd/1683159/5962214df251/ajhg00081-0022.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnoldus E. P., Wiegant J., Noordermeer I. A., Wessels J. W., Beverstock G. C., Grosveld G. C., van der Ploeg M., Raap A. K. Detection of the Philadelphia chromosome in interphase nuclei. Cytogenet Cell Genet. 1990;54(3-4):108–111. doi: 10.1159/000132972. [DOI] [PubMed] [Google Scholar]
- Batanian J. R., Ledbetter S. A., Wolff R. K., Nakamura Y., White R., Dobyns W. B., Ledbetter D. H. Rapid diagnosis of Miller-Dieker syndrome and isolated lissencephaly sequence by the polymerase chain reaction. Hum Genet. 1990 Oct;85(5):555–559. doi: 10.1007/BF00194237. [DOI] [PubMed] [Google Scholar]
- Cannizzaro L. A., Emanuel B. S. An improved method for G-banding chromosomes after in situ hybridization. Cytogenet Cell Genet. 1984;38(4):308–309. doi: 10.1159/000132079. [DOI] [PubMed] [Google Scholar]
- Dauwerse J. G., Kievits T., Beverstock G. C., van der Keur D., Smit E., Wessels H. W., Hagemeijer A., Pearson P. L., van Ommen G. J., Breuning M. H. Rapid detection of chromosome 16 inversion in acute nonlymphocytic leukemia, subtype M4: regional localization of the breakpoint in 16p. Cytogenet Cell Genet. 1990;53(2-3):126–128. doi: 10.1159/000132911. [DOI] [PubMed] [Google Scholar]
- Dobyns W. B., Curry C. J., Hoyme H. E., Turlington L., Ledbetter D. H. Clinical and molecular diagnosis of Miller-Dieker syndrome. Am J Hum Genet. 1991 Mar;48(3):584–594. [PMC free article] [PubMed] [Google Scholar]
- Dobyns W. B., Stratton R. F., Greenberg F. Syndromes with lissencephaly. I: Miller-Dieker and Norman-Roberts syndromes and isolated lissencephaly. Am J Med Genet. 1984 Jul;18(3):509–526. doi: 10.1002/ajmg.1320180320. [DOI] [PubMed] [Google Scholar]
- Kievits T., Dauwerse J. G., Wiegant J., Devilee P., Breuning M. H., Cornelisse C. J., van Ommen G. J., Pearson P. L. Rapid subchromosomal localization of cosmids by nonradioactive in situ hybridization. Cytogenet Cell Genet. 1990;53(2-3):134–136. doi: 10.1159/000132913. [DOI] [PubMed] [Google Scholar]
- Ledbetter D. H., Ledbetter S. A., vanTuinen P., Summers K. M., Robinson T. J., Nakamura Y., Wolff R., White R., Barker D. F., Wallace M. R. Molecular dissection of a contiguous gene syndrome: frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated "island" in the Miller-Dieker chromosome region. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5136–5140. doi: 10.1073/pnas.86.13.5136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lichter P., Tang C. J., Call K., Hermanson G., Evans G. A., Housman D., Ward D. C. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science. 1990 Jan 5;247(4938):64–69. doi: 10.1126/science.2294592. [DOI] [PubMed] [Google Scholar]
- Litt M., White R. L. A highly polymorphic locus in human DNA revealed by cosmid-derived probes. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6206–6210. doi: 10.1073/pnas.82.18.6206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lux S. E., Tse W. T., Menninger J. C., John K. M., Harris P., Shalev O., Chilcote R. R., Marchesi S. L., Watkins P. C., Bennett V. Hereditary spherocytosis associated with deletion of human erythrocyte ankyrin gene on chromosome 8. Nature. 1990 Jun 21;345(6277):736–739. doi: 10.1038/345736a0. [DOI] [PubMed] [Google Scholar]
- Ried T., Mahler V., Vogt P., Blonden L., van Ommen G. J., Cremer T., Cremer M. Direct carrier detection by in situ suppression hybridization with cosmid clones of the Duchenne/Becker muscular dystrophy locus. Hum Genet. 1990 Oct;85(6):581–586. doi: 10.1007/BF00193578. [DOI] [PubMed] [Google Scholar]
- Rowley J. D., Diaz M. O., Espinosa R., 3rd, Patel Y. D., van Melle E., Ziemin S., Taillon-Miller P., Lichter P., Evans G. A., Kersey J. H. Mapping chromosome band 11q23 in human acute leukemia with biotinylated probes: identification of 11q23 translocation breakpoints with a yeast artificial chromosome. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9358–9362. doi: 10.1073/pnas.87.23.9358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz C. E., Johnson J. P., Holycross B., Mandeville T. M., Sears T. S., Graul E. A., Carey J. C., Schroer R. J., Phelan M. C., Szollar J. Detection of submicroscopic deletions in band 17p13 in patients with the Miller-Dieker syndrome. Am J Hum Genet. 1988 Nov;43(5):597–604. [PMC free article] [PubMed] [Google Scholar]
- Tkachuk D. C., Westbrook C. A., Andreeff M., Donlon T. A., Cleary M. L., Suryanarayan K., Homge M., Redner A., Gray J., Pinkel D. Detection of bcr-abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science. 1990 Oct 26;250(4980):559–562. doi: 10.1126/science.2237408. [DOI] [PubMed] [Google Scholar]
- Zhang F. R., Heilig R., Thomas G., Aurias A. A one-step efficient and specific non-radioactive non-fluorescent method for in situ hybridization of banded chromosomes. Chromosoma. 1990 Oct;99(6):436–439. doi: 10.1007/BF01726696. [DOI] [PubMed] [Google Scholar]
- vanTuinen P., Dobyns W. B., Rich D. C., Summers K. M., Robinson T. J., Nakamura Y., Ledbetter D. H. Molecular detection of microscopic and submicroscopic deletions associated with Miller-Dieker syndrome. Am J Hum Genet. 1988 Nov;43(5):587–596. [PMC free article] [PubMed] [Google Scholar]