Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jan;63(1):270–276. doi: 10.1128/aem.63.1.270-276.1997

Succession and convergence of biofilm communities in fixed-film reactors treating aromatic hydrocarbons in groundwater.

A Massol-Deyá 1, R Weller 1, L Ríos-Hernández 1, J Z Zhou 1, R F Hickey 1, J M Tiedje 1
PMCID: PMC168319  PMID: 8979355

Abstract

Community composition, succession, and performance were compared in three fluidized bed reactors (FBR) operated to test preemptive colonization and the influence of toluene compared with a mixture of benzene, toluene, and p-xylene (BTX) as feeds. One reactor was inoculated with toluene-degrading strains Pseudomonas putida PaW1, Burkholderia cepacia G4, and B. pickettii PKO1. PaW1 outcompeted the other two strains. When groundwater strains were allowed to challenge the steady-state biofilm developed by inoculated strains, they readily displaced the inoculated strains and further reduced the toluene effluent concentration from 0.140 to 0.063 mg/liter for 98% removal. Amplified ribosomal DNA restriction analysis (ARDRA) of reactor community DNA showed a succession of populations to a pattern that was stable for at least 4 months of operation. Parallel reactors fed toluene and BTX but inoculated directly from groundwater had the same treatment performance and the same ARDRA profiles as each other and as the seeded reactor once the groundwater community took over. Convergence and stability of populations were confirmed by genotype analysis of 120 isolates taken from all reactors and at several times. Ninety percent of the isolates were of 4 of the 12 genotypes found, and their ARDRA patterns accounted for most of the community ARDRA patterns. Estimates of the maximum specific growth rates (mu max), half-saturation constants (K(m)), and maximum substrate utilization rates (Vmax) of the 12 genotypes isolated revealed a rather high diversity of toluene use kinetics even though the toluene in the feed was constant. The climax populations, however, generally showed kinetic parameters indicative of greater competitiveness than the inocula. rRNA sequence analysis of three codominant strains showed them to be members of the alpha, beta, and gamma subdivisions of the Proteobacteria. Two were similar to Comamonas and Pseudomonas putida, but the member of the alpha group was somewhat distant from any organism in the rRNA database. The convergence of communities to the same composition from three different starting conditions and their constancy over several months suggests that a rather stable community was selected.

Full Text

The Full Text of this article is available as a PDF (360.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aelion C. M., Bradley P. M. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer. Appl Environ Microbiol. 1991 Jan;57(1):57–63. doi: 10.1128/aem.57.1.57-63.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–464. doi: 10.1146/annurev.mi.41.100187.002251. [DOI] [PubMed] [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Duetz W. A., de Jong C., Williams P. A., van Andel J. G. Competition in chemostat culture between Pseudomonas strains that use different pathways for the degradation of toluene. Appl Environ Microbiol. 1994 Aug;60(8):2858–2863. doi: 10.1128/aem.60.8.2858-2863.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989 Oct 11;17(19):7843–7853. doi: 10.1093/nar/17.19.7843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ensley B. D. Biochemical diversity of trichloroethylene metabolism. Annu Rev Microbiol. 1991;45:283–299. doi: 10.1146/annurev.mi.45.100191.001435. [DOI] [PubMed] [Google Scholar]
  7. Folsom B. R., Chapman P. J., Pritchard P. H. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol. 1990 May;56(5):1279–1285. doi: 10.1128/aem.56.5.1279-1285.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Franklin F. C., Bagdasarian M., Bagdasarian M. M., Timmis K. N. Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7458–7462. doi: 10.1073/pnas.78.12.7458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fredrickson A. G., Stephanopoulos G. Microbial competition. Science. 1981 Aug 28;213(4511):972–979. doi: 10.1126/science.7268409. [DOI] [PubMed] [Google Scholar]
  10. Haack S. K., Garchow H., Odelson D. A., Forney L. J., Klug M. J. Accuracy, reproducibility, and interpretation of Fatty Acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol. 1994 Jul;60(7):2483–2493. doi: 10.1128/aem.60.7.2483-2493.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harayama S., Rekik M., Wubbolts M., Rose K., Leppik R. A., Timmis K. N. Characterization of five genes in the upper-pathway operon of TOL plasmid pWW0 from Pseudomonas putida and identification of the gene products. J Bacteriol. 1989 Sep;171(9):5048–5055. doi: 10.1128/jb.171.9.5048-5055.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levin B. R. Coexistence of two asexual strains on a single resource. Science. 1972 Mar 17;175(4027):1272–1274. doi: 10.1126/science.175.4027.1272. [DOI] [PubMed] [Google Scholar]
  13. Massol-Deyá A. A., Whallon J., Hickey R. F., Tiedje J. M. Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater. Appl Environ Microbiol. 1995 Feb;61(2):769–777. doi: 10.1128/aem.61.2.769-777.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Owens J. D., Keddie R. M. The nitrogen nutrition of soil and herbage coryneform bacteria. J Appl Bacteriol. 1969 Sep;32(3):338–347. doi: 10.1111/j.1365-2672.1969.tb00981.x. [DOI] [PubMed] [Google Scholar]
  15. Schmidt T. M., DeLong E. F., Pace N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991 Jul;173(14):4371–4378. doi: 10.1128/jb.173.14.4371-4378.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shaw R. The polyunsaturated fatty acids of microorganisms. Adv Lipid Res. 1966;4:107–174. doi: 10.1016/b978-1-4831-9940-5.50011-9. [DOI] [PubMed] [Google Scholar]
  17. Shiba T., Simidu U., Taga N. Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol. 1979 Jul;38(1):43–45. doi: 10.1128/aem.38.1.43-45.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K. H. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol. 1994 Mar;60(3):792–800. doi: 10.1128/aem.60.3.792-800.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Warren T. M., Williams V., Fletcher M. Influence of solid surface, adhesive ability, and inoculum size on bacterial colonization in microcosm studies. Appl Environ Microbiol. 1992 Sep;58(9):2954–2959. doi: 10.1128/aem.58.9.2954-2959.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zhou J., Fries M. R., Chee-Sanford J. C., Tiedje J. M. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol. 1995 Jul;45(3):500–506. doi: 10.1099/00207713-45-3-500. [DOI] [PubMed] [Google Scholar]
  21. Zimmermann R., Iturriaga R., Becker-Birck J. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol. 1978 Dec;36(6):926–935. doi: 10.1128/aem.36.6.926-935.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zylstra G. J., Gibson D. T. Aromatic hydrocarbon degradation: a molecular approach. Genet Eng (N Y) 1991;13:183–203. doi: 10.1007/978-1-4615-3760-1_8. [DOI] [PubMed] [Google Scholar]
  23. de Bruijn F. J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 1992 Jul;58(7):2180–2187. doi: 10.1128/aem.58.7.2180-2187.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES