Abstract
Carbonic anhydrase II (CA II), which has the highest turnover number and widest tissue distribution of any of the seven CA isozymes known in humans, is absent from the red blood cells and probably from other tissues of patients with CA II deficiency syndrome. We have sequenced the CA II gene in a patient from a consanguinous marriage in a Belgian family and identified the mutation that is probably the cause of the CA II deficiency in that family. The change is a C-to-T transition which results in the substitution of Tyr (TAT) for His (CAT) at position 107. This histidine is invariant in all amniotic CA isozymes sequenced to date, as well as the CAs from elasmobranch and algal sources and in a viral CA-related protein. His-107 appears to have a stabilizing function in the structure of all CA molecules, and its substitution by Tyr apparently disrupts the critical hydrogen bonding of His-107 to two other similarly invariant residues, Glu-117 and Tyr-194, resulting in an unstable CA II molecule. We have also completed the intron-exon structure of the normal human CA II gene, which has allowed us to prepare PCR primers for all exons. These primers will facilitate the determination of the mutations in other inherited CA II deficiencies.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amann E., Brosius J. "ATG vectors' for regulated high-level expression of cloned genes in Escherichia coli. Gene. 1985;40(2-3):183–190. doi: 10.1016/0378-1119(85)90041-1. [DOI] [PubMed] [Google Scholar]
 - Amor-Gueret M., Levi-Strauss M. Nucleotide and derived amino-acid sequence of a cDNA encoding a new mouse carbonic anhydrase. Nucleic Acids Res. 1990 Mar 25;18(6):1646–1646. doi: 10.1093/nar/18.6.1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Bachmann B., Lüke W., Hunsmann G. Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic Acids Res. 1990 Mar 11;18(5):1309–1309. doi: 10.1093/nar/18.5.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Brady H. J., Sowden J. C., Edwards M., Lowe N., Butterworth P. H. Multiple GF-1 binding sites flank the erythroid specific transcription unit of the human carbonic anhydrase I gene. FEBS Lett. 1989 Nov 6;257(2):451–456. doi: 10.1016/0014-5793(89)81594-7. [DOI] [PubMed] [Google Scholar]
 - Cochat P., Loras-Duclaux I., Guibaud P. Déficit en anhydrase carbonique II: ostéopétrose, acidose rénale tubulaire et calcifications intrâcraniennes. Revue de la littérature à partir de trois observations. Pediatrie. 1987;42(2):121–128. [PubMed] [Google Scholar]
 - Dodgson S. J., Forster R. E., 2nd, Sly W. S., Tashian R. E. Carbonic anhydrase activity of intact carbonic anhydrase II-deficient human erythrocytes. J Appl Physiol (1985) 1988 Oct;65(4):1472–1480. doi: 10.1152/jappl.1988.65.4.1472. [DOI] [PubMed] [Google Scholar]
 - Forsman C., Behravan G., Osterman A., Jonsson B. H. Production of active human carbonic anhydrase II in E. coli. Acta Chem Scand B. 1988 May;42(5):314–318. doi: 10.3891/acta.chem.scand.42b-0314. [DOI] [PubMed] [Google Scholar]
 - Fraser P., Cummings P., Curtis P. The mouse carbonic anhydrase I gene contains two tissue-specific promoters. Mol Cell Biol. 1989 Aug;9(8):3308–3313. doi: 10.1128/mcb.9.8.3308. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Frischauf A. M., Lehrach H., Poustka A., Murray N. Lambda replacement vectors carrying polylinker sequences. J Mol Biol. 1983 Nov 15;170(4):827–842. doi: 10.1016/s0022-2836(83)80190-9. [DOI] [PubMed] [Google Scholar]
 - Fukuzawa H., Fujiwara S., Yamamoto Y., Dionisio-Sese M. L., Miyachi S. cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4383–4387. doi: 10.1073/pnas.87.11.4383. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Hattori M., Sakaki Y. Dideoxy sequencing method using denatured plasmid templates. Anal Biochem. 1986 Feb 1;152(2):232–238. doi: 10.1016/0003-2697(86)90403-3. [DOI] [PubMed] [Google Scholar]
 - Hillstrom Shapiro L., Venta P. J., Yu Y. S., Tashian R. E. Carbonic anhydrase II is induced in HL-60 cells by 1,25-dihydroxyvitamin D3: a model for osteoclast gene regulation. FEBS Lett. 1989 Jun 5;249(2):307–310. doi: 10.1016/0014-5793(89)80647-7. [DOI] [PubMed] [Google Scholar]
 - Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
 - Kannan K. K., Notstrand B., Fridborg K., Lövgren S., Ohlsson A., Petef M. Crystal structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nominal 2.2-A resolution. Proc Natl Acad Sci U S A. 1975 Jan;72(1):51–55. doi: 10.1073/pnas.72.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Kato K. Sequence of a novel carbonic anhydrase-related polypeptide and its exclusive presence in Purkinje cells. FEBS Lett. 1990 Oct 1;271(1-2):137–140. doi: 10.1016/0014-5793(90)80390-5. [DOI] [PubMed] [Google Scholar]
 - Krupin T., Sly W. S., Whyte M. P., Dodgson S. J. Failure of acetazolamide to decrease intraocular pressure in patients with carbonic anhydrase II deficiency. Am J Ophthalmol. 1985 Apr 15;99(4):396–399. doi: 10.1016/0002-9394(85)90004-2. [DOI] [PubMed] [Google Scholar]
 - Lawn R. M., Fritsch E. F., Parker R. C., Blake G., Maniatis T. The isolation and characterization of linked delta- and beta-globin genes from a cloned library of human DNA. Cell. 1978 Dec;15(4):1157–1174. doi: 10.1016/0092-8674(78)90043-0. [DOI] [PubMed] [Google Scholar]
 - Lewis S. E., Erickson R. P., Barnett L. B., Venta P. J., Tashian R. E. N-ethyl-N-nitrosourea-induced null mutation at the mouse Car-2 locus: an animal model for human carbonic anhydrase II deficiency syndrome. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1962–1966. doi: 10.1073/pnas.85.6.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Lloyd J., Brownson C., Tweedie S., Charlton J., Edwards Y. H. Human muscle carbonic anhydrase: gene structure and DNA methylation patterns in fetal and adult tissues. Genes Dev. 1987 Aug;1(6):594–602. doi: 10.1101/gad.1.6.594. [DOI] [PubMed] [Google Scholar]
 - Montgomery J. C., Venta P. J., Tashian R. E., Hewett-Emmett D. Nucleotide sequence of human liver carbonic anhydrase II cDNA. Nucleic Acids Res. 1987 Jun 11;15(11):4687–4687. doi: 10.1093/nar/15.11.4687. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Murakami H., Marelich G. P., Grubb J. H., Kyle J. W., Sly W. S. Cloning, expression, and sequence homologies of cDNA for human carbonic anhydrase II. Genomics. 1987 Oct;1(2):159–166. doi: 10.1016/0888-7543(87)90008-5. [DOI] [PubMed] [Google Scholar]
 - Nakai H., Byers M. G., Venta P. J., Tashian R. E., Shows T. B. The gene for human carbonic anhydrase II (CA2) is located at chromosome 8q22. Cytogenet Cell Genet. 1987;44(4):234–235. doi: 10.1159/000132378. [DOI] [PubMed] [Google Scholar]
 - Niles E. G., Seto J. Vaccinia virus gene D8 encodes a virion transmembrane protein. J Virol. 1988 Oct;62(10):3772–3778. doi: 10.1128/jvi.62.10.3772-3778.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Sato S., Zhu X. L., Sly W. S. Carbonic anhydrase isozymes IV and II in urinary membranes from carbonic anhydrase II-deficient patients. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6073–6076. doi: 10.1073/pnas.87.16.6073. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Shapiro L. H., Venta P. J., Tashian R. E. Molecular analysis of G+C-rich upstream sequences regulating transcription of the human carbonic anhydrase II gene. Mol Cell Biol. 1987 Dec;7(12):4589–4593. doi: 10.1128/mcb.7.12.4589. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Sly W. S., Hewett-Emmett D., Whyte M. P., Yu Y. S., Tashian R. E. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A. 1983 May;80(9):2752–2756. doi: 10.1073/pnas.80.9.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Sly W. S., Whyte M. P., Sundaram V., Tashian R. E., Hewett-Emmett D., Guibaud P., Vainsel M., Baluarte H. J., Gruskin A., Al-Mosawi M. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med. 1985 Jul 18;313(3):139–145. doi: 10.1056/NEJM198507183130302. [DOI] [PubMed] [Google Scholar]
 - Spicer S. S., Lewis S. E., Tashian R. E., Schulte B. A. Mice carrying a CAR-2 null allele lack carbonic anhydrase II immunohistochemically and show vascular calcification. Am J Pathol. 1989 Apr;134(4):947–954. [PMC free article] [PubMed] [Google Scholar]
 - Tashian R. E. The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays. 1989 Jun;10(6):186–192. doi: 10.1002/bies.950100603. [DOI] [PubMed] [Google Scholar]
 - Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Vainsel M., Fondu P., Cadranel S., Rocmans C., Gepts W. Osteopetrosis associated with proximal and distal tubular acidosis. Acta Paediatr Scand. 1972 Jul;61(4):429–434. doi: 10.1111/j.1651-2227.1972.tb15859.x. [DOI] [PubMed] [Google Scholar]
 - Venta P. J., Montgomery J. C., Hewett-Emmett D., Tashian R. E. Comparison of the 5' regions of human and mouse carbonic anhydrase II genes and identification of possible regulatory elements. Biochim Biophys Acta. 1985 Dec 18;826(4):195–201. doi: 10.1016/0167-4781(85)90006-5. [DOI] [PubMed] [Google Scholar]
 - Venta P. J., Montgomery J. C., Hewett-Emmett D., Wiebauer K., Tashian R. E. Structure and exon to protein domain relationships of the mouse carbonic anhydrase II gene. J Biol Chem. 1985 Oct 5;260(22):12130–12135. [PubMed] [Google Scholar]
 - Yoshihara C. M., Lee J. D., Dodgson J. B. The chicken carbonic anhydrase II gene: evidence for a recent shift in intron position. Nucleic Acids Res. 1987 Jan 26;15(2):753–770. doi: 10.1093/nar/15.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Young R. A., Davis R. W. Yeast RNA polymerase II genes: isolation with antibody probes. Science. 1983 Nov 18;222(4625):778–782. doi: 10.1126/science.6356359. [DOI] [PubMed] [Google Scholar]
 



