Abstract
Forty-nine isolates of Butyrivibrio fibrisolvens and a single isolate of Butyrivibrio crossotus were screened for the production of inhibitors by a deferred plating procedure. Twenty-five isolates produced factors which, to various degrees, inhibited the growth of the other Butyrivibrio isolates. None of the inhibitory activity was due to bacteriophages. The inhibitory products from 18 of the producing strains were sensitive to protease digestion. Differences in the ranges of activity among the Butyrivibrio isolates and protease sensitivity profiles suggest that a number of different inhibitory compounds are produced. These findings suggest that the production of bacteriocin-like inhibitors may be a widespread characteristic throughout the genus Butyrivibrio. The bacteriocin-like activity from one isolate, B. fibrisolvens AR10, was purified and confirmed to reside in a single peptide. Crude bacteriocin extracts were prepared by ammonium sulfate and methanol precipitation of spent culture supernatants, followed by dialysis and high-speed centrifugation. The active component was isolated from the semicrude extract by reverse-phase chromatography. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed that the peptide was purified to homogeneity, having an estimated molecular mass of approximately 4,000 Da. The N terminus of the peptide was blocked. A cyanogen bromide cleavage fragment of the native peptide yielded a sequence of 20 amino acids [(M)GIQLAPAXYQDIVNXVAAG]. No homology with previously reported bacteriocins was found. Butyrivibriocin AR10 represents the first bacteriocin isolated from a ruminal anaerobe.
Full Text
The Full Text of this article is available as a PDF (543.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams J. C., Hartman P. A., Jacobson N. L. Longevity of selected exogenous microorganisms in the rumen. Can J Microbiol. 1966 Apr;12(2):363–369. doi: 10.1139/m66-049. [DOI] [PubMed] [Google Scholar]
- Amzel L. M., Bryant S. H., Prochaska H. J., Talalay P. Preliminary crystallographic X-ray data for an NAD(P)H:quinone reductase from mouse liver. J Biol Chem. 1986 Jan 25;261(3):1379–1379. [PubMed] [Google Scholar]
- Arihara K., Cassens R. G., Luchansky J. B. Characterization of bacteriocins from Enterococcus faecium with activity against Listeria monocytogenes. Int J Food Microbiol. 1993 Jul;19(2):123–134. doi: 10.1016/0168-1605(93)90178-j. [DOI] [PubMed] [Google Scholar]
- Attwood G. T., Lockington R. A., Xue G. P., Brooker J. D. Use of a unique gene sequence as a probe to enumerate a strain of Bacteroides ruminicola introduced into the rumen. Appl Environ Microbiol. 1988 Feb;54(2):534–539. doi: 10.1128/aem.54.2.534-539.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRYANT M. P., SMALL N. The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J Bacteriol. 1956 Jul;72(1):16–21. doi: 10.1128/jb.72.1.16-21.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barefoot S. F., Nettles C. G. Antibiosis revisited: bacteriocins produced by dairy starter cultures. J Dairy Sci. 1993 Aug;76(8):2366–2379. doi: 10.3168/jds.S0022-0302(93)77574-8. [DOI] [PubMed] [Google Scholar]
- Bradley D. E. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev. 1967 Dec;31(4):230–314. doi: 10.1128/br.31.4.230-314.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caldwell D. R., Bryant M. P. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol. 1966 Sep;14(5):794–801. doi: 10.1128/am.14.5.794-801.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrier R., Padmanabhan V., Hunn A., Wilkinson R. Successful outcome following anastomosis of a severed trochlear nerve in the middle fossa. Aust N Z J Ophthalmol. 1992 May;20(2):133–136. doi: 10.1111/j.1442-9071.1992.tb00725.x. [DOI] [PubMed] [Google Scholar]
- Flint H. J., Bisset J., Webb J. Use of antibiotic resistance mutations to track strains of obligately anaerobic bacteria introduced into the rumen of sheep. J Appl Bacteriol. 1989 Aug;67(2):177–183. doi: 10.1111/j.1365-2672.1989.tb03393.x. [DOI] [PubMed] [Google Scholar]
- Flint H. J. Molecular genetics of obligate anaerobes from the rumen. FEMS Microbiol Lett. 1994 Sep 1;121(3):259–267. doi: 10.1111/j.1574-6968.1994.tb07110.x. [DOI] [PubMed] [Google Scholar]
- Forster R. J., Teather R. M., Gong J., Deng S. J. 16S rDNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer. Lett Appl Microbiol. 1996 Oct;23(4):218–222. doi: 10.1111/j.1472-765x.1996.tb00069.x. [DOI] [PubMed] [Google Scholar]
- Holck A., Axelsson L., Birkeland S. E., Aukrust T., Blom H. Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Gen Microbiol. 1992 Dec;138(12):2715–2720. doi: 10.1099/00221287-138-12-2715. [DOI] [PubMed] [Google Scholar]
- Iverson W. G., Millis N. F. Bacteriocins of Streptococcus bovis. Can J Microbiol. 1976 Jul;22(7):1040–1047. doi: 10.1139/m76-151. [DOI] [PubMed] [Google Scholar]
- Jack R. W., Tagg J. R., Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev. 1995 Jun;59(2):171–200. doi: 10.1128/mr.59.2.171-200.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarvis B. D. Lysis of viable rumen bacteria in bovine rumen fluid. Appl Microbiol. 1968 May;16(5):714–723. doi: 10.1128/am.16.5.714-723.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joerger M. C., Klaenhammer T. R. Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J. J Bacteriol. 1990 Nov;172(11):6339–6347. doi: 10.1128/jb.172.11.6339-6347.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellner R., Jung G., Hörner T., Zähner H., Schnell N., Entian K. D., Götz F. Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur J Biochem. 1988 Oct 15;177(1):53–59. doi: 10.1111/j.1432-1033.1988.tb14344.x. [DOI] [PubMed] [Google Scholar]
- Klaenhammer T. R. Bacteriocins of lactic acid bacteria. Biochimie. 1988 Mar;70(3):337–349. doi: 10.1016/0300-9084(88)90206-4. [DOI] [PubMed] [Google Scholar]
- Klaenhammer T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
- Lauková A., Mareková M. Antimicrobial spectrum of bacteriocin-like substances produced by rumen staphylococci. Folia Microbiol (Praha) 1993;38(1):74–76. doi: 10.1007/BF02814554. [DOI] [PubMed] [Google Scholar]
- Miranda C. M., Farias L. M., Carvalho M. A., Damasceno C. A., Totola A. H., Tavares C. A., Cisalpino E. O., Vieira E. C. Purification and partial characterization of a bacteriocin isolated from Bacteroides ovatus H47. Can J Microbiol. 1993 Feb;39(2):169–174. doi: 10.1139/m93-023. [DOI] [PubMed] [Google Scholar]
- Mørtvedt C. I., Nissen-Meyer J., Sletten K., Nes I. F. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl Environ Microbiol. 1991 Jun;57(6):1829–1834. doi: 10.1128/aem.57.6.1829-1834.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odenyo A. A., Mackie R. I., Stahl D. A., White B. A. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Appl Environ Microbiol. 1994 Oct;60(10):3688–3696. doi: 10.1128/aem.60.10.3688-3696.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith C. J., Hespell R. B. Prospects for development and use of recombinant deoxyribonucleic acid techniques with ruminal bacteria. J Dairy Sci. 1983 Jul;66(7):1536–1546. doi: 10.3168/jds.S0022-0302(83)81970-5. [DOI] [PubMed] [Google Scholar]
- Southern J. A., Katz W., Woods D. R. Purification and properties of a cell-bound bacteriocin from a Bacteroides fragilis strain. Antimicrob Agents Chemother. 1984 Feb;25(2):253–257. doi: 10.1128/aac.25.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tagg J. R., Dajani A. S., Wannamaker L. W. Bacteriocins of gram-positive bacteria. Bacteriol Rev. 1976 Sep;40(3):722–756. doi: 10.1128/br.40.3.722-756.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teather R. M. Isolation of Plasmid DNA from Butyrivibrio fibrisolvens. Appl Environ Microbiol. 1982 Feb;43(2):298–302. doi: 10.1128/aem.43.2.298-302.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teather R. M. Maintenance of Laboratory strains of obligately anaerobic rumen bacteria. Appl Environ Microbiol. 1982 Aug;44(2):499–501. doi: 10.1128/aem.44.2.499-501.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venema K., Abee T., Haandrikman A. J., Leenhouts K. J., Kok J., Konings W. N., Venema G. Mode of Action of Lactococcin B, a Thiol-Activated Bacteriocin from Lactococcus lactis. Appl Environ Microbiol. 1993 Apr;59(4):1041–1048. doi: 10.1128/aem.59.4.1041-1048.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace R. J. Ruminal microbiology, biotechnology, and ruminant nutrition: progress and problems. J Anim Sci. 1994 Nov;72(11):2992–3003. doi: 10.2527/1994.72112992x. [DOI] [PubMed] [Google Scholar]
- Wallace R. J., Walker N. D. Isolation and attempted introduction of sugar alcohol-utilizing bacteria in the sheep rumen. J Appl Bacteriol. 1993 Apr;74(4):353–359. doi: 10.1111/j.1365-2672.1993.tb05138.x. [DOI] [PubMed] [Google Scholar]
- Willems A., Amat-Marco M., Collins M. D. Phylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylum of the gram-positive bacteria. Int J Syst Bacteriol. 1996 Jan;46(1):195–199. doi: 10.1099/00207713-46-1-195. [DOI] [PubMed] [Google Scholar]