Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1989 Aug;45(2):283–295.

Genomic organization of the human asparagine transfer RNA genes: localization to the U1 RNA gene and class I pseudogene repeat units.

R A Buckland 1
PMCID: PMC1683362  PMID: 2757033

Abstract

Previously isolated human DNA clones containing asparagine transfer RNA (tRNAAsn) genes have been used to determine the genomic organization of this multigene family in man. One clone also contained a gene for U1 RNA, and so the organization of the two multigene families could be directly compared. The majority, and perhaps all, of the human tRNAAsn genes map to the same chromosome bands as do the U1 RNA true genes and class I pseudogenes located on the short and long arms, respectively, of chromosome 1. These two gene clusters were independently isolated using a somatic-cell hybrid minipanel, and use of repeat-unit DNA polymorphisms showed that one tRNA gene clone maps to the short-arm gene cluster and the other to the long-arm gene cluster. Electron microscopy of heteroduplexes between these two clones showed duplex formation along the proposed region of overlap between them, indicating that the short- and long-arm gene clusters are structurally related. I suggest that the split into two distinct loci was facilitated by a pericentric chromosome inversion. This would have had the effect of positioning the genes currently on the long arm adjacent to the centromeric heterochromatin, perhaps resulting in a "position effect" on transcription of these genes. Restriction fragments of different sizes were found that were common to a majority of repeat units, depending on the restriction enzyme being used. Pulsed-field electrophoresis revealed that fragments of molecular weight of 180 kb were common to each unit (or multiples of units). These fragments also contained U1 RNA gene sequences. I therefore propose that these two gene families are closely linked on repeat units (or multiples of units) of 180 kb in size, which are probably organized in tandem arrays.

Full text

PDF
283

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN D. D., GURDON J. B. ABSENCE OF RIBOSOMAL RNA SYNTHESIS IN THE ANUCLEOLATE MUTANT OF XENOPUS LAEVIS. Proc Natl Acad Sci U S A. 1964 Jan;51:139–146. doi: 10.1073/pnas.51.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernstein L. B., Manser T., Weiner A. M. Human U1 small nuclear RNA genes: extensive conservation of flanking sequences suggests cycles of gene amplification and transposition. Mol Cell Biol. 1985 Sep;5(9):2159–2171. doi: 10.1128/mcb.5.9.2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blattner F. R., Williams B. G., Blechl A. E., Denniston-Thompson K., Faber H. E., Furlong L., Grunwald D. J., Kiefer D. O., Moore D. D., Schumm J. W. Charon phages: safer derivatives of bacteriophage lambda for DNA cloning. Science. 1977 Apr 8;196(4286):161–169. doi: 10.1126/science.847462. [DOI] [PubMed] [Google Scholar]
  4. Buckland R. A., Cooke H. J., Roy K. L., Dahlberg J. E., Lund E. Isolation and characterization of three cloned fragments of human DNA coding for tRNAs and small nuclear RNA U1. Gene. 1983 May-Jun;22(2-3):211–217. doi: 10.1016/0378-1119(83)90105-1. [DOI] [PubMed] [Google Scholar]
  5. Buckland R. A., Elder J. K. On the mechanism of amplification of satellite II DNA sequences of the domestic goat Capra hircus. J Mol Biol. 1985 Nov 5;186(1):13–23. doi: 10.1016/0022-2836(85)90252-9. [DOI] [PubMed] [Google Scholar]
  6. Chang Y. N., Pirtle I. L., Pirtle R. M. Nucleotide sequence and transcription of a human tRNA gene cluster with four genes. Gene. 1986;48(1):165–174. doi: 10.1016/0378-1119(86)90362-8. [DOI] [PubMed] [Google Scholar]
  7. Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
  8. Clarkson S. G., Kurer V. Isolation and some properties of DNA coding for tRNA1met from Xenopus laevis. Cell. 1976 Jun;8(2):183–195. doi: 10.1016/0092-8674(76)90002-7. [DOI] [PubMed] [Google Scholar]
  9. Doran J. L., Wei X. P., Roy K. L. Analysis of a human gene cluster coding for tRNA(GAAPhe) and tRNA(UUULys). Gene. 1987;56(2-3):231–243. doi: 10.1016/0378-1119(87)90140-5. [DOI] [PubMed] [Google Scholar]
  10. Dutrillaux B., Couturier J. The ancestral karyotype of platyrrhine monkeys. Cytogenet Cell Genet. 1981;30(4):232–242. doi: 10.1159/000131614. [DOI] [PubMed] [Google Scholar]
  11. Elder J. K., Green D. K., Southern E. M. Automatic reading of DNA sequencing gel autoradiographs using a large format digital scanner. Nucleic Acids Res. 1986 Jan 10;14(1):417–424. doi: 10.1093/nar/14.1.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goddard J. P., Squire M., Bienz M., Smith J. D. A human tRNAGlu gene of high transcriptional activity. Nucleic Acids Res. 1983 May 11;11(9):2551–2562. doi: 10.1093/nar/11.9.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goodman H. M., Olson M. V., Hall B. D. Nucleotide sequence of a mutant eukaryotic gene: the yeast tyrosine-inserting ochre suppressor SUP4-o. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5453–5457. doi: 10.1073/pnas.74.12.5453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harper M. E., Saunders G. F. Localization of single copy DNA sequences of G-banded human chromosomes by in situ hybridization. Chromosoma. 1981;83(3):431–439. doi: 10.1007/BF00327364. [DOI] [PubMed] [Google Scholar]
  15. Hatlen L., Attardi G. Proportion of HeLa cell genome complementary to transfer RNA and 5 s RNA. J Mol Biol. 1971 Mar 28;56(3):535–553. doi: 10.1016/0022-2836(71)90400-1. [DOI] [PubMed] [Google Scholar]
  16. Hazelrigg T., Levis R., Rubin G. M. Transformation of white locus DNA in drosophila: dosage compensation, zeste interaction, and position effects. Cell. 1984 Feb;36(2):469–481. doi: 10.1016/0092-8674(84)90240-x. [DOI] [PubMed] [Google Scholar]
  17. Jacobs P. A., Buckton K. E., Cunningham C., Newton M. An analysis of the break points of structural rearrangements in man. J Med Genet. 1974 Mar;11(1):50–64. doi: 10.1136/jmg.11.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindgren V., Bernstein L. B., Weiner A. M., Francke U. Human U1 small nuclear RNA pseudogenes do not map to the site of the U1 genes in 1p36 but are clustered in 1q12-q22. Mol Cell Biol. 1985 Sep;5(9):2172–2180. doi: 10.1128/mcb.5.9.2172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lund E., Bostock C., Robertson M., Christie S., Mitchen J. L., Dahlberg J. E. U1 small nuclear RNA genes are located on human chromosome 1 and are expressed in mouse-human hybrid cells. Mol Cell Biol. 1983 Dec;3(12):2211–2220. doi: 10.1128/mcb.3.12.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lund E., Dahlberg J. E. True genes for human U1 small nuclear RNA. Copy number, polymorphism, and methylation. J Biol Chem. 1984 Feb 10;259(3):2013–2021. [PubMed] [Google Scholar]
  21. Ma D. P., Lund E., Dahlberg J. E., Roe B. A. Nucleotide sequences of two regions of the human genome containing tRNAAsn genes. Gene. 1984 May;28(2):257–262. doi: 10.1016/0378-1119(84)90264-6. [DOI] [PubMed] [Google Scholar]
  22. MacPherson J. M., Roy K. L. Two human tyrosine tRNA genes contain introns. Gene. 1986;42(1):101–106. doi: 10.1016/0378-1119(86)90155-1. [DOI] [PubMed] [Google Scholar]
  23. Makowski D. R., Haas R. A., Dolan K. P., Grunberger D. Molecular cloning, sequence analysis and in vitro expression of a rat tRNA gene cluster. Nucleic Acids Res. 1983 Dec 20;11(24):8609–8624. doi: 10.1093/nar/11.24.8609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Manser T., Gesteland R. F. Human U1 loci: genes for human U1 RNA have dramatically similar genomic environments. Cell. 1982 May;29(1):257–264. doi: 10.1016/0092-8674(82)90110-6. [DOI] [PubMed] [Google Scholar]
  25. Müller F., Clarkson S. G. Nucleotide sequence of genes coding for tRNAPhe and tRNATyr from a repeating unit of X. laevis DNA. Cell. 1980 Feb;19(2):345–353. doi: 10.1016/0092-8674(80)90509-7. [DOI] [PubMed] [Google Scholar]
  26. Naylor S. L., Sakaguchi A. Y., Shows T. B., Grzeschik K. H., Holmes M., Zasloff M. Two nonallelic tRNAiMet genes are located in the p23 leads to q12 region of human chromosome 6. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5027–5031. doi: 10.1073/pnas.80.16.5027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Naylor S. L., Zabel B. U., Manser T., Gesteland R., Sakaguchi A. Y. Localization of human U1 small nuclear RNA genes to band p36.3 of chromosome 1 by in situ hybridization. Somat Cell Mol Genet. 1984 May;10(3):307–313. doi: 10.1007/BF01535252. [DOI] [PubMed] [Google Scholar]
  28. O'Neill V. A., Eden F. C., Pratt K., Hatfield D. L. A human opal suppressor tRNA gene and pseudogene. J Biol Chem. 1985 Feb 25;260(4):2501–2508. [PubMed] [Google Scholar]
  29. Pardue M. L., Brown D. D., Birnstiel M. L. Location of the genes for 5S ribosomal RNA in Xenopus laevis. Chromosoma. 1973;42(2):191–203. doi: 10.1007/BF00320940. [DOI] [PubMed] [Google Scholar]
  30. Pirtle I. L., Shortridge R. D., Pirtle R. M. Nucleotide sequence and transcription of a human glycine tRNAGCC gene and nearby pseudogene. Gene. 1986;43(1-2):155–167. doi: 10.1016/0378-1119(86)90019-3. [DOI] [PubMed] [Google Scholar]
  31. Povey S., Slaughter C. A., Wilson D. E., Gormley I. P., Buckton K. E., Perry P., Bobrow M. Evidence for the assignment of the loci AK1, AK3 and ACONs to chromosome 9 in man. Ann Hum Genet. 1976 May;39(4):413–422. doi: 10.1111/j.1469-1809.1976.tb00145.x. [DOI] [PubMed] [Google Scholar]
  32. Rosen A., Sarid S., Daniel V. Genes and pseudogenes in a reiterated rat tRNA gene cluster. Nucleic Acids Res. 1984 Jun 25;12(12):4893–4906. doi: 10.1093/nar/12.12.4893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roy K. L., Cooke H., Buckland R. Nucleotide sequence of a segment of human DNA containing the three tRNA genes. Nucleic Acids Res. 1982 Nov 25;10(22):7313–7322. doi: 10.1093/nar/10.22.7313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rumpler Y., Couturier J., Warter S., Dutrillaux B. Chromosomal evolution in Malagasy lemurs. VII. Phylogenic relationships between Propithecus, Avahi (Indridae), Microcebus (Cheirogaleidae), and Lemur (Lemuridae). Cytogenet Cell Genet. 1983;36(3):542–546. doi: 10.1159/000131970. [DOI] [PubMed] [Google Scholar]
  35. Santos T., Zasloff M. Comparative analysis of human chromosomal segments bearing nonallelic dispersed tRNAimet genes. Cell. 1981 Mar;23(3):699–709. doi: 10.1016/0092-8674(81)90433-5. [DOI] [PubMed] [Google Scholar]
  36. Shen C. K., Maniatis T. The organization of repetitive sequences in a cluster of rabbit beta-like globin genes. Cell. 1980 Feb;19(2):379–391. doi: 10.1016/0092-8674(80)90512-7. [DOI] [PubMed] [Google Scholar]
  37. Shibuya K., Noguchi S., Nishimura S., Sekiya T. Characterization of a rat tRNA gene cluster containing the genes for tRNAAsp, tRNAGly and tRNAGlu, and pseudogenes. Nucleic Acids Res. 1982 Jul 24;10(14):4441–4448. doi: 10.1093/nar/10.14.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith G. P. Evolution of repeated DNA sequences by unequal crossover. Science. 1976 Feb 13;191(4227):528–535. doi: 10.1126/science.1251186. [DOI] [PubMed] [Google Scholar]
  39. Southern E. M. Long range periodicities in mouse satellite DNA. J Mol Biol. 1975 May 5;94(1):51–69. doi: 10.1016/0022-2836(75)90404-0. [DOI] [PubMed] [Google Scholar]
  40. Twigg A. J., Sherratt D. Trans-complementable copy-number mutants of plasmid ColE1. Nature. 1980 Jan 10;283(5743):216–218. doi: 10.1038/283216a0. [DOI] [PubMed] [Google Scholar]
  41. Westin G., Zabielski J., Hammarström K., Monstein H. J., Bark C., Pettersson U. Clustered genes for human U2 RNA. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3811–3815. doi: 10.1073/pnas.81.12.3811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zasloff M., Santos T. Reiteration frequency mapping: analysis of repetitive sequence organization within cloned DNA fragments containing the human initiator methionine tRNA gene. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5668–5672. doi: 10.1073/pnas.77.10.5668. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES