Abstract
We have examined the competitive binding of several species of Bifidobacterium and Escherichia coli Pb176, an enterotoxigenic E. coli (ETEC) strain, to gangliotetraosylceramide (asialo GM1 or GA1), a common bacterium-binding structure, and identified a factor(s) in the Bifidobacterium culture supernatant fluid that inhibits the binding of E. coli Pb176 to GA1. The ETEC strain we used expresses colonization factor antigen (CFA) II, which consists of coli surface-associated antigens CS1 and CS3. Competitive exclusion of ETEC from GA1 molecules by Bifidobacterium cells was found by an in vitro thin-layer chromatography overlay binding suppression assay. However, the ETEC cells were less effective in blocking the adherence of Bifidobacterium cells to GA1. These findings suggest that the two bacterial species recognize different binding sites on the GA1 molecule and that the mechanism of competitive exclusion is not due to specific blockage of a common binding site on the molecule. The neutralized culture supernatant fluids of Bifidobacterium species, including that of Bifidobacterium longum SBT 2928 (BL2928), showed remarkable inhibition of the ETEC binding to GA1. Our results suggest that the binding inhibitor produced by BL2928 is a proteinaceous molecule(s) with a molecular weight around or over 100,000 and a neutral isoelectric point. The binding inhibitor produced by BL2928 and other Bifidobacterium species is estimated to contribute to their normal anti-infectious activities by preventing the binding of pathogenic strains of E. coli to GA1 on the surface of the human intestinal mucosa.
Full Text
The Full Text of this article is available as a PDF (7.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernet M. F., Brassart D., Neeser J. R., Servin A. L. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Appl Environ Microbiol. 1993 Dec;59(12):4121–4128. doi: 10.1128/aem.59.12.4121-4128.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bullen C. L., Tearle P. V., Stewart M. G. The effect of "humanised" milks and supplemented breast feeding on the faecal flora of infants. J Med Microbiol. 1977 Nov;10(4):403–413. doi: 10.1099/00222615-10-4-403. [DOI] [PubMed] [Google Scholar]
- Giannella R. A. Chronic diarrhea in travelers: diagnostic and therapeutic considerations. Rev Infect Dis. 1986 May-Jun;8 (Suppl 2):S223–S226. doi: 10.1093/clinids/8.supplement_2.s223. [DOI] [PubMed] [Google Scholar]
- Grant M. M., Niederman M. S., Poehlman M. A., Fein A. M. Characterization of Pseudomonas aeruginosa adherence to cultured hamster tracheal epithelial cells. Am J Respir Cell Mol Biol. 1991 Dec;5(6):563–570. doi: 10.1165/ajrcmb/5.6.563. [DOI] [PubMed] [Google Scholar]
- Karlsson K. A., Strömberg N. Overlay and solid-phase analysis of glycolipid receptors for bacteria and viruses. Methods Enzymol. 1987;138:220–232. doi: 10.1016/0076-6879(87)38019-x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Levine M. M. Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J Infect Dis. 1987 Mar;155(3):377–389. doi: 10.1093/infdis/155.3.377. [DOI] [PubMed] [Google Scholar]
- Mitsuoka T., Hayakawa K., Kimura N. Die Faekalflora bei Menschen. II. Die Zusammensetzung der Bifidobakterienflora der verschiedenen Altersgruppen. Zentralbl Bakteriol Orig A. 1974 Jun;226(4):469–478. [PubMed] [Google Scholar]
- Mizutani T., Mitsuoka T. Effect of intestinal bacteria on incidence of liver tumors in gnotobiotic C3H/He male mice. J Natl Cancer Inst. 1979 Dec;63(6):1365–1370. [PubMed] [Google Scholar]
- Moreau M. C., Thomasson M., Ducluzeau R., Raibaud P. Cinétique d'établissement de la microflore digestive chez le nouveau-né humain en fonction de la nature du lait. Reprod Nutr Dev. 1986;26(2B):745–753. [PubMed] [Google Scholar]
- Orø H. S., Kolstø A. B., Wennerås C., Svennerholm A. M. Identification of asialo GM1 as a binding structure for Escherichia coli colonization factor antigens. FEMS Microbiol Lett. 1990 Nov;60(3):289–292. doi: 10.1016/0378-1097(90)90319-l. [DOI] [PubMed] [Google Scholar]
- Reid G., Bruce A. W., McGroarty J. A., Cheng K. J., Costerton J. W. Is there a role for lactobacilli in prevention of urogenital and intestinal infections? Clin Microbiol Rev. 1990 Oct;3(4):335–344. doi: 10.1128/cmr.3.4.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid G., Cook R. L., Bruce A. W. Examination of strains of lactobacilli for properties that may influence bacterial interference in the urinary tract. J Urol. 1987 Aug;138(2):330–335. doi: 10.1016/s0022-5347(17)43137-5. [DOI] [PubMed] [Google Scholar]
- Saiman L., Prince A. Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest. 1993 Oct;92(4):1875–1880. doi: 10.1172/JCI116779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umesaki Y., Suzuki A., Kasama T., Tohyama K., Mutai M., Yamakawa T. Presence of asialo GM1 and glucosylceramide in the intestinal mucosa of mice and induction of fucosyl asialo GM1 by conventionalization of germ-free mice. J Biochem. 1981 Dec;90(6):1731–1738. doi: 10.1093/oxfordjournals.jbchem.a133650. [DOI] [PubMed] [Google Scholar]
- Umesaki Y., Takamizawa K., Ohara M. Structural and compositional difference in the neutral glycolipids between epithelial and non-epithelial tissue of the mouse small intestine. Biochim Biophys Acta. 1989 Feb 6;1001(2):157–162. doi: 10.1016/0005-2760(89)90142-2. [DOI] [PubMed] [Google Scholar]