Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Feb;63(2):609–614. doi: 10.1128/aem.63.2.609-614.1997

Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos.

M P Jobin 1, F Delmas 1, D Garmyn 1, C Diviès 1, J Guzzo 1
PMCID: PMC168350  PMID: 9023938

Abstract

In Leuconostoc oenos, different stresses such as heat, ethanol, and acid shocks dramatically induce the expression of an 18-kDa small heat shock protein called Lo 18. The corresponding gene (hsp18) was cloned from a genomic library of L. oenos constructed in Escherichia coli. A 2.3-kb DNA fragment carrying the hsp18 gene was sequenced. The hsp18 gene encodes a polypeptide of 148 amino acids with a calculated molecular mass of 16,938 Da. The Lo18 protein has a significant identity with small heat shock proteins of the alpha-crystallin family. The transcriptional start site was determined by primer extension. This experiment allowed us to identify the promoter region exhibiting high similarity to consensus promoter sequences of gram-positive bacteria, as well as E. coli. Northern blot analysis showed that hsp18 consists of a unique transcription unit of 0.6 kb. Moreover, hsp18 expression seemed to be controlled at the transcriptional level. This small heat shock protein was found to be peripherally associated with the membrane of L. oenos.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson B. G., Raizada M., Bouchard R. A., Frappier R. H., Walden D. B. The independent stage-specific expression of the 18-kDa heat shock protein genes during microsporogenesis in Zea mays L. Dev Genet. 1993;14(1):15–26. doi: 10.1002/dvg.1020140104. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Cavin J. F., Prevost H., Lin J., Schmitt P., Divies C. Medium for Screening Leuconostoc oenos Strains Defective in Malolactic Fermentation. Appl Environ Microbiol. 1989 Mar;55(3):751–753. doi: 10.1128/aem.55.3.751-753.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen J. D., Morrison D. A. Construction and properties of a new insertion vector, pJDC9, that is protected by transcriptional terminators and useful for cloning of DNA from Streptococcus pneumoniae. Gene. 1988 Apr 15;64(1):155–164. doi: 10.1016/0378-1119(88)90489-1. [DOI] [PubMed] [Google Scholar]
  5. Dicks L. M., Dellaglio F., Collins M. D. Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov.. Int J Syst Bacteriol. 1995 Apr;45(2):395–397. doi: 10.1099/00207713-45-2-395. [DOI] [PubMed] [Google Scholar]
  6. Dombek K. M., Ingram L. O. Effects of ethanol on the Escherichia coli plasma membrane. J Bacteriol. 1984 Jan;157(1):233–239. doi: 10.1128/jb.157.1.233-239.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garmyn D., Ferain T., Bernard N., Hols P., Delcour J. Cloning, nucleotide sequence, and transcriptional analysis of the Pediococcus acidilactici L-(+)-lactate dehydrogenase gene. Appl Environ Microbiol. 1995 Jan;61(1):266–272. doi: 10.1128/aem.61.1.266-272.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Graves M. C., Rabinowitz J. C. In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for "extended" promoter elements in gram-positive organisms. J Biol Chem. 1986 Aug 25;261(24):11409–11415. [PubMed] [Google Scholar]
  9. Guzzo J., Murgier M., Filloux A., Lazdunski A. Cloning of the Pseudomonas aeruginosa alkaline protease gene and secretion of the protease into the medium by Escherichia coli. J Bacteriol. 1990 Feb;172(2):942–948. doi: 10.1128/jb.172.2.942-948.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hecker M., Schumann W., Völker U. Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol. 1996 Feb;19(3):417–428. doi: 10.1046/j.1365-2958.1996.396932.x. [DOI] [PubMed] [Google Scholar]
  11. Heidelbach M., Skladny H., Schairer H. U. Heat shock and development induce synthesis of a low-molecular-weight stress-responsive protein in the myxobacterium Stigmatella aurantiaca. J Bacteriol. 1993 Nov;175(22):7479–7482. doi: 10.1128/jb.175.22.7479-7482.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hengge-Aronis R. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell. 1993 Jan 29;72(2):165–168. doi: 10.1016/0092-8674(93)90655-a. [DOI] [PubMed] [Google Scholar]
  13. Heyde M., Portalier R. Acid shock proteins of Escherichia coli. FEMS Microbiol Lett. 1990 May;57(1-2):19–26. doi: 10.1016/0378-1097(90)90406-g. [DOI] [PubMed] [Google Scholar]
  14. Hols P., Ferain T., Garmyn D., Bernard N., Delcour J. Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for alpha-amylase and levanase expression. Appl Environ Microbiol. 1994 May;60(5):1401–1413. doi: 10.1128/aem.60.5.1401-1413.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10449–10453. doi: 10.1073/pnas.89.21.10449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kerppola R. E., Shyamala V. K., Klebba P., Ames G. F. The membrane-bound proteins of periplasmic permeases form a complex. Identification of the histidine permease HisQMP complex. J Biol Chem. 1991 May 25;266(15):9857–9865. [PubMed] [Google Scholar]
  17. Knack G., Liu Z., Kloppstech K. Low molecular mass heat-shock proteins of a light-resistant photoautotrophic cell culture. Eur J Cell Biol. 1992 Oct;59(1):166–175. [PubMed] [Google Scholar]
  18. Krishna P., Felsheim R. F., Larkin J. C., Das A. Structure and Light-Induced Expression of a Small Heat-Shock Protein Gene of Pharbitis nil. Plant Physiol. 1992 Dec;100(4):1772–1779. doi: 10.1104/pp.100.4.1772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Labarre C., Guzzo J., Cavin J. F., Diviès C. Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl Environ Microbiol. 1996 Apr;62(4):1274–1282. doi: 10.1128/aem.62.4.1274-1282.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lenne C., Block M. A., Garin J., Douce R. Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochem J. 1995 Nov 1;311(Pt 3):805–813. doi: 10.1042/bj3110805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lünsdorf H., Schairer H. U., Heidelbach M. Localization of the stress protein SP21 in indole-induced spores, fruiting bodies, and heat-shocked cells of Stigmatella aurantiaca. J Bacteriol. 1995 Dec;177(24):7092–7099. doi: 10.1128/jb.177.24.7092-7099.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mager W. H., De Kruijff A. J. Stress-induced transcriptional activation. Microbiol Rev. 1995 Sep;59(3):506–531. doi: 10.1128/mr.59.3.506-531.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Naouri P., Chagnaud P., Arnaud A., Galzy P. Purification and properties of a malolactic enzyme from Leuconostoc oenos ATCC 23278. J Basic Microbiol. 1990;30(8):577–585. doi: 10.1002/jobm.3620300813. [DOI] [PubMed] [Google Scholar]
  25. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  26. Salema M., Lolkema J. S., San Romão M. V., Lourero Dias M. C. The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J Bacteriol. 1996 Jun;178(11):3127–3132. doi: 10.1128/jb.178.11.3127-3132.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sauer U., Dürre P. Sequence and molecular characterization of a DNA region encoding a small heat shock protein of Clostridium acetobutylicum. J Bacteriol. 1993 Jun;175(11):3394–3400. doi: 10.1128/jb.175.11.3394-3400.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Servant P., Mazodier P. Characterization of Streptomyces albus 18-kilodalton heat shock-responsive protein. J Bacteriol. 1995 Jun;177(11):2998–3003. doi: 10.1128/jb.177.11.2998-3003.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Straus D. B., Walter W. A., Gross C. A. The heat shock response of E. coli is regulated by changes in the concentration of sigma 32. Nature. 1987 Sep 24;329(6137):348–351. doi: 10.1038/329348a0. [DOI] [PubMed] [Google Scholar]
  31. Susek R. E., Lindquist S. L. hsp26 of Saccharomyces cerevisiae is related to the superfamily of small heat shock proteins but is without a demonstrable function. Mol Cell Biol. 1989 Nov;9(11):5265–5271. doi: 10.1128/mcb.9.11.5265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Takemoto L., Emmons T., Horwitz J. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation. Biochem J. 1993 Sep 1;294(Pt 2):435–438. doi: 10.1042/bj2940435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  34. Weng J., Wang Z. F., Nguyen H. T. Nucleotide sequence of a Triticum aestivum cDNA clone which is homologous to the 26 kDa chloroplast-localized heat shock protein gene of maize. Plant Mol Biol. 1991 Aug;17(2):255–258. doi: 10.1007/BF00039500. [DOI] [PubMed] [Google Scholar]
  35. Yuan Y., Crane D. D., Barry C. E., 3rd Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J Bacteriol. 1996 Aug;178(15):4484–4492. doi: 10.1128/jb.178.15.4484-4492.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zúiga M., Pardo I., Ferrer S. Transposons Tn916 and Tn925 can transfer from Enterococcus faecalis to Leuconostoc oenos. FEMS Microbiol Lett. 1996 Jan 15;135(2-3):179–185. doi: 10.1016/0378-1097(95)00446-7. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES