Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Feb;63(2):636–643. doi: 10.1128/aem.63.2.636-643.1997

Aerobic and anaerobic metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium isolated from marine sediments.

J F Rontani 1, M J Gilewicz 1, V D Michotey 1, T L Zheng 1, P C Bonin 1, J C Bertrand 1
PMCID: PMC168353  PMID: 9023941

Abstract

This report describes the metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium (Marinobacter sp. strain CAB) isolated from marine sediments. Under aerobic and denitrifying conditions, this strain efficiently degraded this ubiquitous isoprenoid ketone. Several bacterial metabolites, 4,8,12-trimethyl-tridecan-1-ol, 4,8,12-trimethyltridecanal, 4,8,12-trimethyltridecanoic acid, Z-3,7-dimethylocten-2-oic acid, Z-3,7,11-trimethyldodecen-2-oic acid, and 6,10,14-trimethylpentadecan-2-ol, were formally identified, and different pathways were proposed to explain the formation of such isoprenoid compounds.

Full Text

The Full Text of this article is available as a PDF (468.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balderston W. L., Sherr B., Payne W. J. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl Environ Microbiol. 1976 Apr;31(4):504–508. doi: 10.1128/aem.31.4.504-508.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonin P., Gilewicz M., Bertrand J. C. Denitrification by a marine bacterium Pseudomonas nautica strain 617. Ann Inst Pasteur Microbiol. 1987 May-Jun;138(3):371–383. doi: 10.1016/0769-2609(87)90125-6. [DOI] [PubMed] [Google Scholar]
  3. Britton L. N., Brand J. M., Markovetz A. J. Source of oxygen in the conversion of 2-tridecanone to undecyl acetate by Pseudomonas cepacia and Nocardia sp. Biochim Biophys Acta. 1974 Oct 16;369(1):45–49. doi: 10.1016/0005-2760(74)90190-8. [DOI] [PubMed] [Google Scholar]
  4. Cantwell S. G., Lau E. P., Watt D. S., Fall R. R. Biodegradation of acyclic isoprenoids by Pseudomonas species. J Bacteriol. 1978 Aug;135(2):324–333. doi: 10.1128/jb.135.2.324-333.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan Y. K., Knowles R. Measurement of denitrification in two freshwater sediments by an in situ acetylene inhibition method. Appl Environ Microbiol. 1979 Jun;37(6):1067–1072. doi: 10.1128/aem.37.6.1067-1072.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Donoghue N. A., Norris D. B., Trudgill P. W. The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871. Eur J Biochem. 1976 Mar 16;63(1):175–192. doi: 10.1111/j.1432-1033.1976.tb10220.x. [DOI] [PubMed] [Google Scholar]
  7. Fall R. R., Brown J. L., Schaeffer T. L. Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellolis. Appl Environ Microbiol. 1979 Oct;38(4):715–722. doi: 10.1128/aem.38.4.715-722.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Faulkner D. V., Jurka J. Multiple aligned sequence editor (MASE). Trends Biochem Sci. 1988 Aug;13(8):321–322. doi: 10.1016/0968-0004(88)90129-6. [DOI] [PubMed] [Google Scholar]
  9. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J. C. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol. 1992 Oct;42(4):568–576. doi: 10.1099/00207713-42-4-568. [DOI] [PubMed] [Google Scholar]
  10. Gellerman J. L., Anderson W. H., Schlenk H. Synthesis and analysis of phytyl and phytenoyl wax esters. Lipids. 1975 Nov;10(11):656–661. doi: 10.1007/BF02532757. [DOI] [PubMed] [Google Scholar]
  11. Gillan F. T., Nichols P. D., Johns R. B., Bavor H. J. Phytol degradation by marine bacteria. Appl Environ Microbiol. 1983 May;45(5):1423–1428. doi: 10.1128/aem.45.5.1423-1428.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klug M. J., Markovetz A. J. Utilization of aliphatic hydrocarbons by micro-organisms. Adv Microb Physiol. 1971;5:1–43. doi: 10.1016/s0065-2911(08)60404-x. [DOI] [PubMed] [Google Scholar]
  13. LUKINS H. B., FOSTER J. W. METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA. J Bacteriol. 1963 May;85:1074–1087. doi: 10.1128/jb.85.5.1074-1087.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Patrick M. A., Dugan P. R. Influence of hydrocarbons and derivatives on the polar lipid fatty acids of an Acinetobacter isolate. J Bacteriol. 1974 Jul;119(1):76–81. doi: 10.1128/jb.119.1.76-81.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Platen H., Schink B. Anaerobic degradation of acetone and higher ketones via carboxylation by newly isolated denitrifying bacteria. J Gen Microbiol. 1989 Apr;135(4):883–891. doi: 10.1099/00221287-135-4-883. [DOI] [PubMed] [Google Scholar]
  16. SEUBERT W. Degradation of isoprenoid compounds by micro-organisms. I. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis n. sp. J Bacteriol. 1960 Mar;79:426–434. doi: 10.1128/jb.79.3.426-434.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  18. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991 Jan;173(2):697–703. doi: 10.1128/jb.173.2.697-703.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES