Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Feb;63(2):694–702. doi: 10.1128/aem.63.2.694-702.1997

The ldh phylogeny for environmental isolates of Lactococcus lactis is consistent with rRNA genotypes but not with phenotypes.

E Urbach 1, B Daniels 1, M S Salama 1, W E Sandine 1, S J Giovannoni 1
PMCID: PMC168359  PMID: 9023947

Abstract

Lactate dehydrogenase (ldh) gene sequences, levels of 16S rRNA group-specific probe binding, and phenotypic characteristics were compared for 45 environmental isolates and four commercial starter strains of Lactococcus lactis to identify evolutionary groups best suited to cheddar cheese manufacture, ldh sequences from the environmental isolates showed high similarity to those from two groups of L. lactis used for industrial fermentations, L. lactis subsp. cremoris and subsp. lactis. Within each phylogenetically defined subspecies, ldh sequence similarities were greater than 99.1%. Strains with phenotypic traits formerly diagnostic for both subspecies were found in each ldh similarity group, but only strains belonging to L. lactis subsp. cremoris by both the newer, genetic and the older, superseded phenotypic criteria were judged potentially suitable for the commercial production of cheddar cheese. Identical evolutionary relationships were inferred from ldh sequences and from binding of subspecies-specific, 16S rRNA-directed oligonucleotide probes. However, groups defined according to these chromosomal traits bore no relationship to patterns of arginine deamination, carbon substrate utilization, or bacteriophage sensitivity, which may be encoded by cryptic genes or sexually transmissible genetic elements. Fourteen new L. lactis subsp. cremoris isolates were identified as suitable candidates for cheddar cheese manufacture, and 10 of these were completely resistant to three different batteries of commercial bacteriophages known to reduce starter activity.

Full Text

The Full Text of this article is available as a PDF (284.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dear S., Staden R. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 1991 Jul 25;19(14):3907–3911. doi: 10.1093/nar/19.14.3907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Delorme C., Godon J. J., Ehrlich S. D., Renault P. Mosaic structure of large regions of the Lactococcus lactis subsp. cremoris chromosome. Microbiology. 1994 Nov;140(Pt 11):3053–3060. doi: 10.1099/13500872-140-11-3053. [DOI] [PubMed] [Google Scholar]
  3. Feirtag J. M., Petzel J. P., Pasalodos E., Baldwin K. A., McKay L. L. Thermosensitive plasmid replication, temperature-sensitive host growth, and chromosomal plasmid integration conferred by Lactococcus lactis subsp. cremoris lactose plasmids in Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1991 Feb;57(2):539–548. doi: 10.1128/aem.57.2.539-548.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Godon J. J., Delorme C., Ehrlich S. D., Renault P. Divergence of Genomic Sequences between Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris. Appl Environ Microbiol. 1992 Dec;58(12):4045–4047. doi: 10.1128/aem.58.12.4045-4047.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gordon D. A., Giovannoni S. J. Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Appl Environ Microbiol. 1996 Apr;62(4):1171–1177. doi: 10.1128/aem.62.4.1171-1177.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Griffin H. G., Swindell S. R., Gasson M. J. Cloning and sequence analysis of the gene encoding L-lactate dehydrogenase from Lactococcus lactis: evolutionary relationships between 21 different LDH enzymes. Gene. 1992 Dec 1;122(1):193–197. doi: 10.1016/0378-1119(92)90049-u. [DOI] [PubMed] [Google Scholar]
  7. Khosravi L., Sandine W. E. Beta-lactamase-producing mutants of Streptococcus cremoris. J Dairy Sci. 1987 Aug;70(8):1529–1543. doi: 10.3168/jds.S0022-0302(87)80180-7. [DOI] [PubMed] [Google Scholar]
  8. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  9. Le Bourgeois P., Lautier M., van den Berghe L., Gasson M. J., Ritzenthaler P. Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL 1403 reveals a large genome inversion. J Bacteriol. 1995 May;177(10):2840–2850. doi: 10.1128/jb.177.10.2840-2850.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Llanos R. M., Hillier A. J., Davidson B. E. Cloning, nucleotide sequence, expression, and chromosomal location of ldh, the gene encoding L-(+)-lactate dehydrogenase, from Lactococcus lactis. J Bacteriol. 1992 Nov;174(21):6956–6964. doi: 10.1128/jb.174.21.6956-6964.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McKay L. L. Functional properties of plasmids in lactic streptococci. Antonie Van Leeuwenhoek. 1983 Sep;49(3):259–274. doi: 10.1007/BF00399502. [DOI] [PubMed] [Google Scholar]
  12. Owens D., Stinson J., Collins P., Johnson A., Tomkin G. H. Improvement in the regulation of cellular cholesterologenesis in diabetes: the effect of reduction in serum cholesterol by simvastatin. Diabet Med. 1991 Feb-Mar;8(2):151–156. doi: 10.1111/j.1464-5491.1991.tb01562.x. [DOI] [PubMed] [Google Scholar]
  13. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  14. Salama M. S., Sandine W. E., Giovannoni S. J. A milk-based method for detecting antimicrobial substances produced by lactic acid bacteria. J Dairy Sci. 1995 Jun;78(6):1219–1223. doi: 10.3168/jds.S0022-0302(95)76741-8. [DOI] [PubMed] [Google Scholar]
  15. Salama M. S., Sandine W. E., Giovannoni S. J. Isolation of Lactococcus lactis subsp. cremoris from nature by colony hybridization with rRNA probes. Appl Environ Microbiol. 1993 Nov;59(11):3941–3945. doi: 10.1128/aem.59.11.3941-3945.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Salama M., Sandine W., Giovannoni S. Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris. Appl Environ Microbiol. 1991 May;57(5):1313–1318. doi: 10.1128/aem.57.5.1313-1318.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Simons G., Nijhuis M., de Vos W. M. Integration and gene replacement in the Lactococcus lactis lac operon: induction of a cryptic phospho-beta-glucosidase in LacG-deficient strains. J Bacteriol. 1993 Aug;175(16):5168–5175. doi: 10.1128/jb.175.16.5168-5175.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Swindell S. R., Griffin H. G., Gasson M. J. Cloning, sequencing and comparison of three lactococcal L-lactate dehydrogenase genes. Microbiology. 1994 Jun;140(Pt 6):1301–1305. doi: 10.1099/00221287-140-6-1301. [DOI] [PubMed] [Google Scholar]
  19. Terzaghi B. E., Sandine W. E. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol. 1975 Jun;29(6):807–813. doi: 10.1128/am.29.6.807-813.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vaughan E. E., David S., Harrington A., Daly C., Fitzgerald G. F., De Vos W. M. Characterization of plasmid-encoded citrate permease (citP) genes from Leuconostoc species reveals high sequence conservation with the Lactococcus lactis citP gene. Appl Environ Microbiol. 1995 Aug;61(8):3172–3176. doi: 10.1128/aem.61.8.3172-3176.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES