Abstract
Three predominant ruminal cellulolytic bacteria (Fibrobacter succinogenes S85, Ruminococcus flavefaciens FD-1, and Ruminococcus albus 7) were grown in different binary combinations to determine the outcome of competition in either cellulose-excess batch culture or in cellulose-limited continuous culture. Relative populations of each species were estimated by using signature membrane-associated fatty acids and/or 16S rRNA-targeted oligonucleotide probes. Both F. succinogenes and R. flavefaciens coexisted in cellulose-excess batch culture with similar population sizes (58 and 42%, respectively; standard error, 12%). By contrast, under cellulose limitation R. flavefaciens predominated (> 96% of total cell mass) in coculture with F. succinogenes, regardless of whether the two strains were inoculated simultaneously or whether R. flavefaciens was inoculated into an established culture of F. succinogenes. The predominance of R. flavefaciens over F. succinogenes under cellulose limitation is in accord with the former's more rapid adherence to cellulose and its higher affinity for cellodextrin products of cellulose hydrolysis. In batch cocultures of F. succinogenes and R. albus, the populations of the two species were similar. However, under cellulose limitation, F. succinogenes was the predominant strain (approximately 80% of cell mass) in cultures simultaneously coinoculated with R. albus. The results from batch cocultures of R. flavefaciens and R. albus were not consistent within or among trials: some experiments yielded monocultures of R. albus (suggesting production of an inhibitory agent by R. albus), while others contained substantial populations of both species. Under cellulose limitation, R. flavefaciens predominated over R. albus (85 and 15%, respectively), as would be expected by the former's greater adherence to cellulose. The retention of R. albus in the cellulose-limited coculture may result from a combination of its ability to utilize glucose (which is not utilizable by R. flavefaciens), its demonstrated ability to adapt under selective pressure in the chemostat to utilization of lower concentrations of cellobiose, a major product of cellulose hydrolysis, and its possible production of an inhibitory agent.
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balch W. E., Wolfe R. S. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol. 1976 Dec;32(6):781–791. doi: 10.1128/aem.32.6.781-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhat S., Wallace R. J., Orskov E. R. Adhesion of cellulolytic ruminal bacteria to barley straw. Appl Environ Microbiol. 1990 Sep;56(9):2698–2703. doi: 10.1128/aem.56.9.2698-2703.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dehority B. A. Hemicellulose degradation by rumen bacteria. Fed Proc. 1973 Jul;32(7):1819–1825. [PubMed] [Google Scholar]
- Fredrickson A. G., Stephanopoulos G. Microbial competition. Science. 1981 Aug 28;213(4511):972–979. doi: 10.1126/science.7268409. [DOI] [PubMed] [Google Scholar]
- Helaszek C. T., White B. A. Cellobiose uptake and metabolism by Ruminococcus flavefaciens. Appl Environ Microbiol. 1991 Jan;57(1):64–68. doi: 10.1128/aem.57.1.64-68.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang L., Forsberg C. W. Isolation of a Cellodextrinase from Bacteroides succinogenes. Appl Environ Microbiol. 1987 May;53(5):1034–1041. doi: 10.1128/aem.53.5.1034-1041.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kudo H., Cheng K. J., Costerton J. W. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can J Microbiol. 1987 Mar;33(3):267–272. doi: 10.1139/m87-045. [DOI] [PubMed] [Google Scholar]
- Latham M. J., Brooker B. E., Pettipher G. L., Harris P. J. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl Environ Microbiol. 1978 Jun;35(6):1166–1173. doi: 10.1128/aem.35.6.1166-1173.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lepage G., Roy C. C. Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res. 1986 Jan;27(1):114–120. [PubMed] [Google Scholar]
- Odenyo A. A., Mackie R. I., Fahey G. C., Jr, White B. A. Degradation of wheat straw and alkaline hydrogen peroxide-treated wheat straw by Ruminococcus albus 8 and Ruminococcus flavefaciens FD-1. J Anim Sci. 1991 Feb;69(2):819–826. doi: 10.2527/1991.692819x. [DOI] [PubMed] [Google Scholar]
- Odenyo A. A., Mackie R. I., Stahl D. A., White B. A. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Appl Environ Microbiol. 1994 Oct;60(10):3688–3696. doi: 10.1128/aem.60.10.3688-3696.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odenyo A. A., Mackie R. I., Stahl D. A., White B. A. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Appl Environ Microbiol. 1994 Oct;60(10):3697–3703. doi: 10.1128/aem.60.10.3697-3703.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pavlostathis S. G., Miller T. L., Wolin M. J. Fermentation of Insoluble Cellulose by Continuous Cultures of Ruminococcus albus. Appl Environ Microbiol. 1988 Nov;54(11):2655–2659. doi: 10.1128/aem.54.11.2655-2659.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pavlostathis S. G., Miller T. L., Wolin M. J. Kinetics of Insoluble Cellulose Fermentation by Continuous Cultures of Ruminococcus albus. Appl Environ Microbiol. 1988 Nov;54(11):2660–2663. doi: 10.1128/aem.54.11.2660-2663.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen M. A., Hespell R. B., White B. A., Bothast R. J. Inhibitory Effects of Methylcellulose on Cellulose Degradation by Ruminococcus flavefaciens. Appl Environ Microbiol. 1988 Apr;54(4):890–897. doi: 10.1128/aem.54.4.890-897.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen M. A., White B. A., Hespell R. B. Improved assay for quantitating adherence of ruminal bacteria to cellulose. Appl Environ Microbiol. 1989 Aug;55(8):2089–2091. doi: 10.1128/aem.55.8.2089-2091.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell J. B. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Appl Environ Microbiol. 1985 Mar;49(3):572–576. doi: 10.1128/aem.49.3.572-576.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saluzzi L., Smith A., Stewart C. S. Analysis of bacterial phospholipid markers and plant monosaccharides during forage degradation by Ruminococcus flavefaciens and Fibrobacter succinogenes in co-culture. J Gen Microbiol. 1993 Nov;139(11):2865–2873. doi: 10.1099/00221287-139-11-2865. [DOI] [PubMed] [Google Scholar]
- Shi Y., Weimer P. J. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl Environ Microbiol. 1997 Feb;63(2):743–748. doi: 10.1128/aem.63.2.743-748.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi Y., Weimer P. J. Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Appl Environ Microbiol. 1992 Aug;58(8):2583–2591. doi: 10.1128/aem.58.8.2583-2591.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi Y., Weimer P. J. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria. Appl Environ Microbiol. 1996 Mar;62(3):1084–1088. doi: 10.1128/aem.62.3.1084-1088.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stahl D. A., Flesher B., Mansfield H. R., Montgomery L. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol. 1988 May;54(5):1079–1084. doi: 10.1128/aem.54.5.1079-1084.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thurston B., Dawson K. A., Strobel H. J. Pentose utilization by the ruminal bacterium Ruminococcus albus. Appl Environ Microbiol. 1994 Apr;60(4):1087–1092. doi: 10.1128/aem.60.4.1087-1092.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Soest P. J. The uniformity and nutritive availability of cellulose. Fed Proc. 1973 Jul;32(7):1804–1808. [PubMed] [Google Scholar]
- Waldo D. R., Smith L. W., Cox E. L. Model of cellulose disappearance from the rumen. J Dairy Sci. 1972 Jan;55(1):125–129. doi: 10.3168/jds.S0022-0302(72)85442-0. [DOI] [PubMed] [Google Scholar]
- Weimer P. J. Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture. Arch Microbiol. 1993;160(4):288–294. doi: 10.1007/BF00292079. [DOI] [PubMed] [Google Scholar]
- Weimer P. J., Lopez-Guisa J. M., French A. D. Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro. Appl Environ Microbiol. 1990 Aug;56(8):2421–2429. doi: 10.1128/aem.56.8.2421-2429.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]