Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Feb;63(2):757–760. doi: 10.1128/aem.63.2.757-760.1997

Analysis of whole-cell fatty acid profiles of verotoxigenic Escherichia coli and Salmonella enteritidis with the microbial identification system.

M Steele 1, W B McNab 1, S Read 1, C Poppe 1, L Harris 1, A M Lammerding 1, J A Odumeru 1
PMCID: PMC168365  PMID: 9023953

Abstract

Differentiation of strains within bacterial species, based on gas chromatographic analysis of whole-cell fatty acid profiles, was assessed with 115 strains of verotoxigenic Escherichia coli and 315 strains of Salmonella enteritidis. Fatty acid-based subgroups within each of the two species were generated. Variability of fatty acid profiles observed in repeat preparations from the same strain approached that observed between subgroups, limiting the usefulness of using fatty acid profiles to subgroup verotoxigenic E. coli and S. enteritidis strains.

Full Text

The Full Text of this article is available as a PDF (219.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett T. J., Lior H., Green J. H., Khakhria R., Wells J. G., Bell B. P., Greene K. D., Lewis J., Griffin P. M. Laboratory investigation of a multistate food-borne outbreak of Escherichia coli O157:H7 by using pulsed-field gel electrophoresis and phage typing. J Clin Microbiol. 1994 Dec;32(12):3013–3017. doi: 10.1128/jcm.32.12.3013-3017.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beltran P., Musser J. M., Helmuth R., Farmer J. J., 3rd, Frerichs W. M., Wachsmuth I. K., Ferris K., McWhorter A. C., Wells J. G., Cravioto A. Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7753–7757. doi: 10.1073/pnas.85.20.7753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birnbaum D., Herwaldt L., Low D. E., Noble M., Pfaller M., Sherertz R., Chow A. W. Efficacy of microbial identification system for epidemiologic typing of coagulase-negative staphylococci. J Clin Microbiol. 1994 Sep;32(9):2113–2119. doi: 10.1128/jcm.32.9.2113-2119.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Drucker D. B., Veazey F. J. Fatty acid fingerprints of Streptococcus mutans NCTC 10832 grown at various temperatures. Appl Environ Microbiol. 1977 Feb;33(2):221–226. doi: 10.1128/aem.33.2.221-226.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hampton M. D., Threlfall E. J., Frost J. A., Ward L. R., Rowe B. Salmonella typhimurium DT 193: differentiation of an epidemic phage type by antibiogram, plasmid profile, plasmid fingerprint and salmonella plasmid virulence (spv) gene probe. J Appl Bacteriol. 1995 Apr;78(4):402–408. doi: 10.1111/j.1365-2672.1995.tb03425.x. [DOI] [PubMed] [Google Scholar]
  6. Khakhria R., Duck D., Lior H. Extended phage-typing scheme for Escherichia coli O157:H7. Epidemiol Infect. 1990 Dec;105(3):511–520. doi: 10.1017/s0950268800048135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Knivett V. A., Cullen J. Some factors affecting cyclopropane acid formation in Escherichia coli. Biochem J. 1965 Sep;96(3):771–776. doi: 10.1042/bj0960771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Madico G., Akopyants N. S., Berg D. E. Arbitrarily primed PCR DNA fingerprinting of Escherichia coli O157:H7 strains by using templates from boiled cultures. J Clin Microbiol. 1995 Jun;33(6):1534–1536. doi: 10.1128/jcm.33.6.1534-1536.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mukwaya G. M., Welch D. F. Subgrouping of Pseudomonas cepacia by cellular fatty acid composition. J Clin Microbiol. 1989 Dec;27(12):2640–2646. doi: 10.1128/jcm.27.12.2640-2646.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ostroff S. M., Tarr P. I., Neill M. A., Lewis J. H., Hargrett-Bean N., Kobayashi J. M. Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J Infect Dis. 1989 Dec;160(6):994–998. doi: 10.1093/infdis/160.6.994. [DOI] [PubMed] [Google Scholar]
  12. Poppe C., McFadden K. A., Brouwer A. M., Demczuk W. Characterization of Salmonella enteritidis strains. Can J Vet Res. 1993 Jul;57(3):176–184. [PMC free article] [PubMed] [Google Scholar]
  13. Thong K. L., Ngeow Y. F., Altwegg M., Navaratnam P., Pang T. Molecular analysis of Salmonella enteritidis by pulsed-field gel electrophoresis and ribotyping. J Clin Microbiol. 1995 May;33(5):1070–1074. doi: 10.1128/jcm.33.5.1070-1074.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Whittam T. S., Wachsmuth I. K., Wilson R. A. Genetic evidence of clonal descent of Escherichia coli O157:H7 associated with hemorrhagic colitis and hemolytic uremic syndrome. J Infect Dis. 1988 Jun;157(6):1124–1133. doi: 10.1093/infdis/157.6.1124. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES