Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1990 Nov;47(5):767–775.

Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5'-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study.

K N Fedde 1, M P Whyte 1
PMCID: PMC1683690  PMID: 2220817

Abstract

To clarify its physiologic role, alkaline phosphatase (ALP) was examined in normal skin fibroblasts and was shown to be the tissue-nonspecific (TNS) isoenzyme type (as evidenced by heat and inhibition profiles) and to be active toward millimolar concentrations of the putative natural substrates phosphoethanolamine (PEA) and pyridoxal-5'-phosphate (PLP). Fibroblast ALP has a low-affinity activity, with a distinctly alkaline pH optimum (9.3), toward 4-methylumbelliferyl phosphate (4-MUP), PEA, and PLP but a more physiologic pH optimum (8.3) toward physiologic concentrations (micromolar) of PEA and PLP. Normal fibroblast ALP is linked to the outside of the plasma membrane, since in intact cell monolayers (1) dephosphorylation rates of the membrane-impermeable substrates PEA and PLP in the medium at physiologic pH were similar to those observed with disrupted cell monolayers, (2) brief exposure to acidic medium resulted in greater than 90% inactivation of the total ALP activity, and (3) digestion with phosphatidylinositol-specific phospholipase C (PI-PLC) released about 80% of the ALP activity. Hypophosphatasia fibroblasts were markedly deficient (2%-5% control values) in alkaline and physiologic ALP activity when 4-MUP, PLP, and PEA were used as substrate. The majority of the detectable ALP activity, however, appeared to be properly lipid anchored in ecto-orientation. Thus, our findings of genetic deficiency of PEA- and PLP-phosphatase activity in hypophosphatasia fibroblasts, as well as our biochemical findings, indicate that TNS-ALP acts physiologically as a lipid-anchored PEA and PLP ectophosphatase.

Full text

PDF
767

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chodirker B. N., Evans J. A., Lewis M., Coghlan G., Belcher E., Philipps S., Seargeant L. E., Sus C., Greenberg C. R. Infantile hypophosphatasia--linkage with the RH locus. Genomics. 1987 Nov;1(3):280–282. doi: 10.1016/0888-7543(87)90056-5. [DOI] [PubMed] [Google Scholar]
  2. Fedde K. N., Lane C. C., Whyte M. P. Alkaline phosphatase is an ectoenzyme that acts on micromolar concentrations of natural substrates at physiologic pH in human osteosarcoma (SAOS-2) cells. Arch Biochem Biophys. 1988 Aug 1;264(2):400–409. doi: 10.1016/0003-9861(88)90305-0. [DOI] [PubMed] [Google Scholar]
  3. Fernley H. N., Walker P. G. Kinetic behaviour of calf-intestinal alkaline phosphatase with 4-methylumbelliferyl phosphate. Biochem J. 1965 Oct;97(1):95–103. doi: 10.1042/bj0970095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Henthorn P. S., Knoll B. J., Raducha M., Rothblum K. N., Slaughter C., Weiss M., Lafferty M. A., Fischer T., Harris H. Products of two common alleles at the locus for human placental alkaline phosphatase differ by seven amino acids. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5597–5601. doi: 10.1073/pnas.83.15.5597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Henthorn P. S., Raducha M., Edwards Y. H., Weiss M. J., Slaughter C., Lafferty M. A., Harris H. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1234–1238. doi: 10.1073/pnas.84.5.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Henthorn P. S., Raducha M., Kadesch T., Weiss M. J., Harris H. Sequence and characterization of the human intestinal alkaline phosphatase gene. J Biol Chem. 1988 Aug 25;263(24):12011–12019. [PubMed] [Google Scholar]
  7. Hofmann M. C., Jeltsch W., Brecher J., Walt H. Alkaline phosphatase isozymes in human testicular germ cell tumors, their precancerous stage, and three related cell lines. Cancer Res. 1989 Sep 1;49(17):4696–4700. [PubMed] [Google Scholar]
  8. Kolata G. Novel protein/membrane attachment. Science. 1985 Aug 30;229(4716):850–850. doi: 10.1126/science.229.4716.850. [DOI] [PubMed] [Google Scholar]
  9. Kominami T., Miki A., Ikehara Y. Electrophoretic characterization of hepatic alkaline phosphatase released by phosphatidylinositol-specific phospholipase C. A comparison with liver membrane and serum-soluble forms. Biochem J. 1985 Apr 1;227(1):183–189. doi: 10.1042/bj2270183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Low M. G., Finean J. B. Release of alkaline phosphatase from membranes by a phosphatidylinositol-specific phospholipase C. Biochem J. 1977 Oct 1;167(1):281–284. doi: 10.1042/bj1670281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Low M. G., Zilversmit D. B. Role of phosphatidylinositol in attachment of alkaline phosphatase to membranes. Biochemistry. 1980 Aug 19;19(17):3913–3918. doi: 10.1021/bi00558a004. [DOI] [PubMed] [Google Scholar]
  12. Millán J. L., Manes T. Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc Natl Acad Sci U S A. 1988 May;85(9):3024–3028. doi: 10.1073/pnas.85.9.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Millán J. L. Molecular cloning and sequence analysis of human placental alkaline phosphatase. J Biol Chem. 1986 Mar 5;261(7):3112–3115. [PubMed] [Google Scholar]
  14. Moss D. W. Aspects of the relationship between liver, kidney and bone alkaline phosphatases. Prog Clin Biol Res. 1984;166:79–86. [PubMed] [Google Scholar]
  15. Mulivor R. A., Boccelli D., Harris H. Quantitative analysis of alkaline phosphatases in serum and amniotic fluid: comparison of biochemical and immunologic assays. J Lab Clin Med. 1985 Mar;105(3):342–348. [PubMed] [Google Scholar]
  16. Pollard H. B., Menard R., Brandt H. A., Pazoles C. J., Creutz C. E., Ramu A. Application of Bradford's protein assay to adrenal gland subcellular fractions. Anal Biochem. 1978 Jun 1;86(2):761–763. doi: 10.1016/0003-2697(78)90805-9. [DOI] [PubMed] [Google Scholar]
  17. Schäli C., Vaughn D. A., Fanestil D. D. Enzymatic removal of alkaline phosphatase from renal brush-border membranes. Effect on phosphate transport and on phosphate binding. Biochim Biophys Acta. 1984 Jan 25;769(2):277–283. doi: 10.1016/0005-2736(84)90307-9. [DOI] [PubMed] [Google Scholar]
  18. Weiss M. J., Cole D. E., Ray K., Whyte M. P., Lafferty M. A., Mulivor R. A., Harris H. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7666–7669. doi: 10.1073/pnas.85.20.7666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weiss M. J., Henthorn P. S., Lafferty M. A., Slaughter C., Raducha M., Harris H. Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7182–7186. doi: 10.1073/pnas.83.19.7182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weiss M. J., Ray K., Fallon M. D., Whyte M. P., Fedde K. N., Lafferty M. A., Mulivor R. A., Harris H. Analysis of liver/bone/kidney alkaline phosphatase mRNA, DNA, and enzymatic activity in cultured skin fibroblasts from 14 unrelated patients with severe hypophosphatasia. Am J Hum Genet. 1989 May;44(5):686–694. [PMC free article] [PubMed] [Google Scholar]
  21. Whyte M. P., Magill H. L., Fallon M. D., Herrod H. G. Infantile hypophosphatasia: normalization of circulating bone alkaline phosphatase activity followed by skeletal remineralization. Evidence for an intact structural gene for tissue nonspecific alkaline phosphatase. J Pediatr. 1986 Jan;108(1):82–88. doi: 10.1016/s0022-3476(86)80773-9. [DOI] [PubMed] [Google Scholar]
  22. Whyte M. P., Mahuren J. D., Fedde K. N., Cole F. S., McCabe E. R., Coburn S. P. Perinatal hypophosphatasia: tissue levels of vitamin B6 are unremarkable despite markedly increased circulating concentrations of pyridoxal-5'-phosphate. Evidence for an ectoenzyme role for tissue-nonspecific alkaline phosphatase. J Clin Invest. 1988 Apr;81(4):1234–1239. doi: 10.1172/JCI113440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Whyte M. P., Mahuren J. D., Vrabel L. A., Coburn S. P. Markedly increased circulating pyridoxal-5'-phosphate levels in hypophosphatasia. Alkaline phosphatase acts in vitamin B6 metabolism. J Clin Invest. 1985 Aug;76(2):752–756. doi: 10.1172/JCI112031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Whyte M. P., Vrabel L. A., Schwartz T. D. Alkaline phosphatase deficiency in cultured skin fibroblasts from patients with hypophosphatasia: comparison of the infantile, childhood, and adult forms. J Clin Endocrinol Metab. 1983 Oct;57(4):831–837. doi: 10.1210/jcem-57-4-831. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES