Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Feb;63(2):779–784. doi: 10.1128/aem.63.2.779-784.1997

A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains.

V Sanchis 1, H Agaisse 1, J Chaufaux 1, D Lereclus 1
PMCID: PMC168370  PMID: 9023958

Abstract

A TnpI-mediated site-specific recombination system to construct genetically modified Bacillus thuringiensis strains was developed. Recombinant B. thuringiensis strains from which antibiotic resistance genes can be selectively eliminated were obtained in vivo with a new vector based on the specific resolution site of transposon Tn4430. For example, a cryIC gene, whose product is active against Spodoptera littoralis, was introduced into B. thuringiensis Kto harboring a cryIA(c) gene active against Ostrinia nubilalis. The resulting strain had a broader activity spectrum than that of the parental strain. It contained only B. thuringiensis DNA and was free of antibiotic resistance genes. This should facilitate regulatory approval for its development as a commercial biopesticide.

Full Text

The Full Text of this article is available as a PDF (383.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arantes O., Lereclus D. Construction of cloning vectors for Bacillus thuringiensis. Gene. 1991 Dec 1;108(1):115–119. doi: 10.1016/0378-1119(91)90495-w. [DOI] [PubMed] [Google Scholar]
  2. Baum J. A., Gilbert M. P. Characterization and comparative sequence analysis of replication origins from three large Bacillus thuringiensis plasmids. J Bacteriol. 1991 Sep;173(17):5280–5289. doi: 10.1128/jb.173.17.5280-5289.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baum J. A. TnpI recombinase: identification of sites within Tn5401 required for TnpI binding and site-specific recombination. J Bacteriol. 1995 Jul;177(14):4036–4042. doi: 10.1128/jb.177.14.4036-4042.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bone E. J., Ellar D. J. Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol Lett. 1989 Apr;49(2-3):171–177. doi: 10.1016/0378-1097(89)90033-5. [DOI] [PubMed] [Google Scholar]
  5. Crickmore N., Nicholls C., Earp D. J., Hodgman T. C., Ellar D. J. The construction of Bacillus thuringiensis strains expressing novel entomocidal delta-endotoxin combinations. Biochem J. 1990 Aug 15;270(1):133–136. doi: 10.1042/bj2700133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gawron-Burke C., Baum J. A. Genetic manipulation of Bacillus thuringiensis insecticidal crystal protein genes in bacteria. Genet Eng (N Y) 1991;13:237–263. doi: 10.1007/978-1-4615-3760-1_11. [DOI] [PubMed] [Google Scholar]
  7. Guérout-Fleury A. M., Shazand K., Frandsen N., Stragier P. Antibiotic-resistance cassettes for Bacillus subtilis. Gene. 1995 Dec 29;167(1-2):335–336. doi: 10.1016/0378-1119(95)00652-4. [DOI] [PubMed] [Google Scholar]
  8. Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lecadet M. M., Chaufaux J., Ribier J., Lereclus D. Construction of Novel Bacillus thuringiensis Strains with Different Insecticidal Activities by Transduction and Transformation. Appl Environ Microbiol. 1992 Mar;58(3):840–849. doi: 10.1128/aem.58.3.840-849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lereclus D., Arantes O. spbA locus ensures the segregational stability of pTH1030, a novel type of gram-positive replicon. Mol Microbiol. 1992 Jan;6(1):35–46. doi: 10.1111/j.1365-2958.1992.tb00835.x. [DOI] [PubMed] [Google Scholar]
  11. Lereclus D., Arantès O., Chaufaux J., Lecadet M. Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol Lett. 1989 Jul 15;51(1):211–217. doi: 10.1016/0378-1097(89)90511-9. [DOI] [PubMed] [Google Scholar]
  12. Lereclus D., Mahillon J., Menou G., Lecadet M. M. Identification of Tn4430, a transposon of Bacillus thuringiensis functional in Escherichia coli. Mol Gen Genet. 1986 Jul;204(1):52–57. doi: 10.1007/BF00330186. [DOI] [PubMed] [Google Scholar]
  13. Mahillon J., Lereclus D. Structural and functional analysis of Tn4430: identification of an integrase-like protein involved in the co-integrate-resolution process. EMBO J. 1988 May;7(5):1515–1526. doi: 10.1002/j.1460-2075.1988.tb02971.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sanchis V., Agaisse H., Chaufaux J., Lereclus D. Construction of new insecticidal Bacillus thuringiensis recombinant strains by using the sporulation non-dependent expression system of cryIIIA and a site specific recombination vector. J Biotechnol. 1996 Jul 18;48(1-2):81–96. doi: 10.1016/0168-1656(96)01404-6. [DOI] [PubMed] [Google Scholar]
  15. Sanchis V., Chaufaux J., Pauron D. A comparison and analysis of the toxicity and receptor binding properties of Bacillus thuringiensis CryIC delta-endotoxin on Spodoptera littoralis and Bombyx mori. FEBS Lett. 1994 Oct 24;353(3):259–263. doi: 10.1016/0014-5793(94)01057-9. [DOI] [PubMed] [Google Scholar]
  16. Sanchis V., Lereclus D., Menou G., Chaufaux J., Guo S., Lecadet M. M. Nucleotide sequence and analysis of the N-terminal coding region of the Spodoptera-active delta-endotoxin gene of Bacillus thuringiensis aizawai 7.29. Mol Microbiol. 1989 Feb;3(2):229–238. doi: 10.1111/j.1365-2958.1989.tb01812.x. [DOI] [PubMed] [Google Scholar]
  17. Trieu-Cuot P., Courvalin P. Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3'5"-aminoglycoside phosphotransferase type III. Gene. 1983 Sep;23(3):331–341. doi: 10.1016/0378-1119(83)90022-7. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES