Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Feb;63(2):806–811. doi: 10.1128/aem.63.2.806-811.1997

Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested-PCR monitoring.

S el Fantroussi 1, J Mahillon 1, H Naveau 1, S N Agathos 1
PMCID: PMC168375  PMID: 9023963

Abstract

Desulfomonile tiedjei and Desulfitobacterium dehalogenans were chosen as model bacteria to demonstrate the introduction of an anaerobic microbia reductive dechlorination activity into nonsterile soil slurry microcosms by inoculation. De novo 3-chlorobenzoate dechlorination activity was established with the bacterium D. tiedjei in microcosms normally devoid of this dechlorination capacity. The addition of D. tiedjei to microcosms supplemented with 20 mM pyruvate as the cosubstrate resulted in total biotransformation of 1.5 mM 3-chlorobenzoate within 7 days. The introduction of the bacterium Desulfitobacterium dehalogenans into nonsterile microcosms resulted in a shortening of the period required for dechlorination activity to be established. In microcosms inoculated with Desulfitobacterium dehalogenans, total degradation of 6 mM 3-chloro-4-hydroxy phenoxyacetic acid (3-Cl-4-OHPA) was observed after 4 days in contrast to the result in noninoculated microcosms, where the total degradation of 3-Cl-4-OHPA by indigenous microorganisms was observed after 11 days. Both externally introduced bacterial strains were detected in soil slurry microcosms by a nested-PCR methodology.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahring B. K., Christiansen N., Mathrani I., Hendriksen H. V., Macario A. J., Conway de Macario E. Introduction of a de novo bioremediation ability, aryl reductive dechlorination, into anaerobic granular sludge by inoculation of sludge with Desulfomonile tiedjei. Appl Environ Microbiol. 1992 Nov;58(11):3677–3682. doi: 10.1128/aem.58.11.3677-3682.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arias C. R., Garay E., Aznar R. Nested PCR method for rapid and sensitive detection of Vibrio vulnificus in fish, sediments, and water. Appl Environ Microbiol. 1995 Sep;61(9):3476–3478. doi: 10.1128/aem.61.9.3476-3478.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Briglia M., Eggen R. I., de Vos W. M., van Elsas J. D. Rapid and sensitive method for the detection of Mycobacterium chlorophenolicum PCP-1 in soil based on 16S rRNA gene-targeted PCR. Appl Environ Microbiol. 1996 Apr;62(4):1478–1480. doi: 10.1128/aem.62.4.1478-1480.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cassinotti P., Weitz M., Siegl G. Human parvovirus B19 infections: routine diagnosis by a new nested polymerase chain reaction assay. J Med Virol. 1993 Jul;40(3):228–234. doi: 10.1002/jmv.1890400311. [DOI] [PubMed] [Google Scholar]
  6. Degrange V., Bardin R. Detection and counting of Nitrobacter populations in soil by PCR. Appl Environ Microbiol. 1995 Jun;61(6):2093–2098. doi: 10.1128/aem.61.6.2093-2098.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dijkmans R., Jagers A., Kreps S., Collard J. M., Mergeay M. Rapid method for purification of soil DNA for hybridization and PCR analysis. Microb Releases. 1993 Jun;2(1):29–34. [PubMed] [Google Scholar]
  8. Jain R. K., Sayler G. S. Problems and potential for in situ treatment of environmental pollutants by engineered microorganisms. Microbiol Sci. 1987 Feb;4(2):59–63. [PubMed] [Google Scholar]
  9. Kreader C. A. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol. 1996 Mar;62(3):1102–1106. doi: 10.1128/aem.62.3.1102-1106.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Townsend G. T., Suflita J. M. Characterization of Chloroethylene Dehalogenation by Cell Extracts of Desulfomonile tiedjei and Its Relationship to Chlorobenzoate Dehalogenation. Appl Environ Microbiol. 1996 Aug;62(8):2850–2853. doi: 10.1128/aem.62.8.2850-2853.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Utkin I., Dalton D. D., Wiegel J. Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. Appl Environ Microbiol. 1995 Jan;61(1):346–351. doi: 10.1128/aem.61.1.346-351.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Volossiouk T., Robb E. J., Nazar R. N. Direct DNA extraction for PCR-mediated assays of soil organisms. Appl Environ Microbiol. 1995 Nov;61(11):3972–3976. doi: 10.1128/aem.61.11.3972-3976.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zhou J., Bruns M. A., Tiedje J. M. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996 Feb;62(2):316–322. doi: 10.1128/aem.62.2.316-322.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES