Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1990 Jul;47(1):73–78.

Extensive genetic heterogeneity in patients with acid alpha glucosidase deficiency as detected by abnormalities of DNA and mRNA.

F Martiniuk 1, M Mehler 1, S Tzall 1, G Meredith 1, R Hirschhorn 1
PMCID: PMC1683757  PMID: 2112341

Abstract

Acid maltase, or acid alpha glucosidase (GAA), is a lysosomal enzyme that hydrolyzes glycogen to glucose and is deficient in glycogen storage disease type II. We have previously isolated a partial cDNA (1.9 kb) for human GAA and detected abnormalities of mRNA in two infantile-onset and one adult-onset patient. We have now extended this study and examined mRNA and DNA from cell lines of eight additional infantile and three adult-onset patients. While five of the 10 infantile-onset patients expressed normal amounts and sizes of mRNA, the remaining five did not express detectable GAA mRNA. Two adult-onset patients had normal amounts and sizes of mRNA, while two adult-onset patients had mRNA of smaller size. Thus, half of the larger series of GAA-deficient patients also exhibited quantitative and/or qualitative abnormalities of mRNA. Of the five infantile-onset patients with normal mRNA, two exhibited an abnormal SacI fragment not found in DNA from 60 normals. To further characterize these patients, we determined GAA activity in several of the cell lines by using either the artificial substrate, 4-methylumbelliferyl-alpha-D-glucoside, or the natural substrate glycogen. Two adult-onset patients who both had normal size mRNA differed as to enzyme activity, with one patient exhibiting enzyme activity similar to that in infantile-onset patients. By combining these data with those for previously reported presence or absence of GAA-mutant protein cross-reacting to antibody, we provide evidence for a minimum of six different mutations in these 14 GAA-deficient cell lines.

Full text

PDF
73

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian G. S., Hutton J. J. Adenosine deaminase messenger RNAs in lymphoblast cell lines derived from leukemic patients and patients with hereditary adenosine deaminase deficiency. J Clin Invest. 1983 Jun;71(6):1649–1660. doi: 10.1172/JCI110920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beratis N. G., LaBadie G. U., Hirschhorn K. Characterization of the molecular defect in infantile and adult acid alpha-glucosidase deficiency fibroblasts. J Clin Invest. 1978 Dec;62(6):1264–1274. doi: 10.1172/JCI109247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown B. I., Brown D. H. The subcellular distribution of enzymes in type II glycogenosis and the occurrence of an oligo-alpha-1,4-glucan glucohydrolase in human tissues. Biochim Biophys Acta. 1965 Oct 25;110(1):124–133. doi: 10.1016/s0926-6593(65)80101-1. [DOI] [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Courtecuissf V., Royer P., Habib R., Monnier C., Demos J. Glycogenose musculaire par deficit d'alpha-1-4-glucosidase simulant une dystrophie musculaire progressive. (Etude clinique et enzymatique. Microscopie optique electronique) Arch Fr Pediatr. 1965 Dec;22(10):1153–1164. [PubMed] [Google Scholar]
  6. Engel A. G., Gomez M. R., Seybold M. E., Lambert E. H. The spectrum and diagnosis of acid maltase deficiency. Neurology. 1973 Jan;23(1):95–106. doi: 10.1212/wnl.23.1.95. [DOI] [PubMed] [Google Scholar]
  7. HERS H. G. alpha-Glucosidase deficiency in generalized glycogenstorage disease (Pompe's disease). Biochem J. 1963 Jan;86:11–16. doi: 10.1042/bj0860011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem. 1980 May 25;255(10):4937–4945. [PubMed] [Google Scholar]
  9. Hoefsloot L. H., Hoogeveen-Westerveld M., Kroos M. A., van Beeumen J., Reuser A. J., Oostra B. A. Primary structure and processing of lysosomal alpha-glucosidase; homology with the intestinal sucrase-isomaltase complex. EMBO J. 1988 Jun;7(6):1697–1704. doi: 10.1002/j.1460-2075.1988.tb02998.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kornfeld S. Trafficking of lysosomal enzymes in normal and disease states. J Clin Invest. 1986 Jan;77(1):1–6. doi: 10.1172/JCI112262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Martiniuk F., Mehler M., Pellicer A., Tzall S., La Badie G., Hobart C., Ellenbogen A., Hirschhorn R. Isolation of a cDNA for human acid alpha-glucosidase and detection of genetic heterogeneity for mRNA in three alpha-glucosidase-deficient patients. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9641–9644. doi: 10.1073/pnas.83.24.9641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Martiniuk F., Mehler M., Tzall S., Meredith G., Hirschhorn R. Sequence of the cDNA and 5'-flanking region for human acid alpha-glucosidase, detection of an intron in the 5' untranslated leader sequence, definition of 18-bp polymorphisms, and differences with previous cDNA and amino acid sequences. DNA Cell Biol. 1990 Mar;9(2):85–94. doi: 10.1089/dna.1990.9.85. [DOI] [PubMed] [Google Scholar]
  13. Mehler M., DiMauro S. Residual acid maltase activity in late-onset acid maltase deficiency. Neurology. 1977 Feb;27(2):178–184. doi: 10.1212/wnl.27.2.178. [DOI] [PubMed] [Google Scholar]
  14. Orkin S. H., Daddona P. E., Shewach D. S., Markham A. F., Bruns G. A., Goff S. C., Kelley W. N. Molecular cloning of human adenosine deaminase gene sequences. J Biol Chem. 1983 Nov 10;258(21):12753–12756. [PubMed] [Google Scholar]
  15. Reuser A. J., Kroos M., Oude Elferink R. P., Tager J. M. Defects in synthesis, phosphorylation, and maturation of acid alpha-glucosidase in glycogenosis type II. J Biol Chem. 1985 Jul 15;260(14):8336–8341. [PubMed] [Google Scholar]
  16. Reuser A. J., Kroos M., Willemsen R., Swallow D., Tager J. M., Galjaard H. Clinical diversity in glycogenosis type II. Biosynthesis and in situ localization of acid alpha-glucosidase in mutant fibroblasts. J Clin Invest. 1987 Jun;79(6):1689–1699. doi: 10.1172/JCI113008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  18. Van der Ploeg A. T., Hoefsloot L. H., Hoogeveen-Westerveld M., Petersen E. M., Reuser A. J. Glycogenosis type II: protein and DNA analysis in five South African families from various ethnic origins. Am J Hum Genet. 1989 Jun;44(6):787–793. [PMC free article] [PubMed] [Google Scholar]
  19. Wigler M., Pellicer A., Silverstein S., Axel R. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell. 1978 Jul;14(3):725–731. doi: 10.1016/0092-8674(78)90254-4. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES