Abstract
Identification of new metabolites and demonstration of key enzyme activities support and extend the pathways previously reported for fluorene metabolism by Arthrobacter sp. strain F101. Washed-cell suspensions of strain F101 with fluorene accumulated 9-fluorenone, 4-hydroxy-9-fluorenone, 3-hydroxy-1-indanone, 1-indanone, 2-indanone, 3-(2-hydroxyphenyl) propionate, and a compound tentatively identified as a formyl indanone. Incubations with 2-indanone produced 3-isochromanone. The growth yield with fluorene as a sole source of carbon and energy corresponded to an assimilation of about 34% of fluorene carbon. About 7.4% was transformed into 9-fluorenol, 9-fluorenone, and 4-hydroxy-9-fluorenone. Crude extracts from fluorene-induced cells showed 3,4-dihydrocoumarin hydrolase and catechol 2,3-dioxygenase activities. These results and biodegradation experiments with the identified metabolites indicate that metabolism of fluorene by Arthrobacter sp. strain F101 proceeds through three independent pathways. Two productive routes are initiated by dioxygenation at positions 1,2 and 3,4, respectively. meta cleavage followed by an aldolase reaction and loss of C-1 yield the detected indanones. Subsequent biological Baeyer-Villiger reactions produce the aromatic lactones 3,4-dihydrocoumarin and 3-isochromanone. Enzymatic hydrolysis of the former gives 3-(2-hydroxyphenyl) propionate, which could be a substrate for a beta oxidation cycle, to give salicylate. Further oxidation of the latter via catechol and 2-hydroxymuconic semialdehyde connects with the central metabolism, allowing the utilization of all fluorene carbons. Identification of 4-hydroxy-9-fluorenone is consistent with an alternative pathway initiated by monooxygenation at C-9 to give 9-fluorenol and then 9-fluorenone. Although dioxygenation at 3,4 positions of the ketone apparently occurs, this reaction fails to furnish a subsequent productive oxidation of this compound.
Full Text
The Full Text of this article is available as a PDF (225.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boldrin B., Tiehm A., Fritzsche C. Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol. 1993 Jun;59(6):1927–1930. doi: 10.1128/aem.59.6.1927-1930.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burlingame R., Chapman P. J. Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli. J Bacteriol. 1983 Jul;155(1):113–121. doi: 10.1128/jb.155.1.113-121.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONRAD H. E., DUBUS R., GUNSALUS I. C. An enzyme system for cyclic ketone lactonization. Biochem Biophys Res Commun. 1961 Nov 29;6:293–297. doi: 10.1016/0006-291x(61)90382-5. [DOI] [PubMed] [Google Scholar]
- Casellas M., Fernandez P., Bayona J. M., Solanas A. M. Bioassay-directed chemical analysis of genotoxic components in urban airborne particulate matter from Barcelona (Spain). Chemosphere. 1995 Feb;30(4):725–740. doi: 10.1016/0045-6535(94)00438-z. [DOI] [PubMed] [Google Scholar]
- Danz M., Müller D., Räthe H. Fluorenone and 2-benzoylfluorenone: different short-term effects on drug-metabolizing liver enzymes and on cell proliferation. Exp Toxicol Pathol. 1992 Sep;44(5):259–261. doi: 10.1016/S0940-2993(11)80239-3. [DOI] [PubMed] [Google Scholar]
- Davey J. F., Trudgill P. W. The metabolism of trans-cyclohexan-1,2-diol by an Acinetobacter species. Eur J Biochem. 1977 Mar 15;74(1):115–127. doi: 10.1111/j.1432-1033.1977.tb11373.x. [DOI] [PubMed] [Google Scholar]
- Davies J. I., Evans W. C. Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. Biochem J. 1964 May;91(2):251–261. doi: 10.1042/bj0910251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donoghue N. A., Norris D. B., Trudgill P. W. The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871. Eur J Biochem. 1976 Mar 16;63(1):175–192. doi: 10.1111/j.1432-1033.1976.tb10220.x. [DOI] [PubMed] [Google Scholar]
- Foght J. M., Westlake D. W. Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can J Microbiol. 1988 Oct;34(10):1135–1141. doi: 10.1139/m88-200. [DOI] [PubMed] [Google Scholar]
- Foght J. M., Westlake D. W. Expression of dibenzothiophene-degradative genes in two Pseudomonas species. Can J Microbiol. 1990 Oct;36(10):718–724. doi: 10.1139/m90-121. [DOI] [PubMed] [Google Scholar]
- Grifoll M., Casellas M., Bayona J. M., Solanas A. M. Isolation and characterization of a fluorene-degrading bacterium: identification of ring oxidation and ring fission products. Appl Environ Microbiol. 1992 Sep;58(9):2910–2917. doi: 10.1128/aem.58.9.2910-2917.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grifoll M., Selifonov S. A., Chapman P. J. Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274. Appl Environ Microbiol. 1994 Jul;60(7):2438–2449. doi: 10.1128/aem.60.7.2438-2449.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grifoll M., Selifonov S. A., Gatlin C. V., Chapman P. J. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds. Appl Environ Microbiol. 1995 Oct;61(10):3711–3723. doi: 10.1128/aem.61.10.3711-3723.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grifoll M., Solanas A. M., Bayona J. M. Bioassay-directed chemical characterization of genotoxic agents in the dissolved and particulate water phases of the Besos and Llobregat Rivers (Barcelona, Spain). Arch Environ Contam Toxicol. 1992 Jul;23(1):19–25. doi: 10.1007/BF00225991. [DOI] [PubMed] [Google Scholar]
- Heitkamp M. A., Freeman J. P., Miller D. W., Cerniglia C. E. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol. 1988 Oct;54(10):2556–2565. doi: 10.1128/aem.54.10.2556-2565.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOSUGE T., CONN E. E. The metabolism of aromatic compounds in higher plants. V. Purification and properties of dihydrocoumarin hydrolase of Melilotus alba. J Biol Chem. 1962 May;237:1653–1656. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Resnick S. M., Torok D. S., Lee K., Brand J. M., Gibson D. T. Regiospecific and stereoselective hydroxylation of 1-indanone and 2-indanone by naphthalene dioxygenase and toluene dioxygenase. Appl Environ Microbiol. 1994 Sep;60(9):3323–3328. doi: 10.1128/aem.60.9.3323-3328.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selifonov S. A., Grifoll M., Eaton R. W., Chapman P. J. Oxidation of naphthenoaromatic and methyl-substituted aromatic compounds by naphthalene 1,2-dioxygenase. Appl Environ Microbiol. 1996 Feb;62(2):507–514. doi: 10.1128/aem.62.2.507-514.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selifonov S. A., Grifoll M., Gurst J. E., Chapman P. J. Isolation and characterization of (+)-1,1a-dihydroxy-1-hydrofluoren-9-one formed by angular dioxygenation in the bacterial catabolism of fluorene. Biochem Biophys Res Commun. 1993 May 28;193(1):67–76. doi: 10.1006/bbrc.1993.1591. [DOI] [PubMed] [Google Scholar]
- Shimizu S., Kataoka M., Shimizu K., Hirakata M., Sakamoto K., Yamada H. Purification and characterization of a novel lactonohydrolase, catalyzing the hydrolysis of aldonate lactones and aromatic lactones, from Fusarium oxysporum. Eur J Biochem. 1992 Oct 1;209(1):383–390. doi: 10.1111/j.1432-1033.1992.tb17300.x. [DOI] [PubMed] [Google Scholar]
- Smith M. R. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation. 1990;1(2-3):191–206. doi: 10.1007/BF00058836. [DOI] [PubMed] [Google Scholar]
- Trenz S. P., Engesser K. H., Fischer P., Knackmuss H. J. Degradation of fluorene by Brevibacterium sp. strain DPO 1361: a novel C-C bond cleavage mechanism via 1,10-dihydro-1,10-dihydroxyfluoren-9-one. J Bacteriol. 1994 Feb;176(3):789–795. doi: 10.1128/jb.176.3.789-795.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wackett L. P., Kwart L. D., Gibson D. T. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. Biochemistry. 1988 Feb 23;27(4):1360–1367. doi: 10.1021/bi00404a041. [DOI] [PubMed] [Google Scholar]