Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1990 Oct;47(4):644–655.

Genetics and biology of human ovarian teratomas. II. Molecular analysis of origin of nondisjunction and gene-centromere mapping of chromosome I markers.

R Deka 1, A Chakravarti 1, U Surti 1, E Hauselman 1, J Reefer 1, P P Majumder 1, R E Ferrell 1
PMCID: PMC1683806  PMID: 1977308

Abstract

Chromosomal heteromorphisms and DNA polymorphisms have been utilized to identify the mechanisms that lead to formation of human ovarian teratomas and to construct a gene-centromere map of chromosome 1 by using those teratomas that arise by meiotic nondisjunction. Of 61 genetically informative ovarian teratomas, 21.3% arose by nondisjunction at meiosis I, and 39.3% arose by meiosis II nondisjunction. Eight polymorphic marker loci on chromosome 1p and one marker on 1q were used to estimate a gene-centromere map. The results show clear linkage of the most proximal 1p marker (NRAS) and the most proximal 1q marker (D1S61) to the centromere at a distance of 14 cM and 20 cM, respectively. Estimated gene-centromere distances suggest that, while recombination occurs normally in ovarian teratomas arising by meiosis II errors, ovarian teratomas arising by meiosis I nondisjunction have altered patterns of recombination. Furthermore, the estimated map demonstrates clear evidence of chiasma interference. Our results suggest that ovarian teratomas can provide a rapid method for mapping genes relative to the centromere.

Full text

PDF
644

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldridge J., Kunkel L., Bruns G., Tantravahi U., Lalande M., Brewster T., Moreau E., Wilson M., Bromley W., Roderick T. A strategy to reveal high-frequency RFLPs along the human X chromosome. Am J Hum Genet. 1984 May;36(3):546–564. [PMC free article] [PubMed] [Google Scholar]
  2. Carritt B., Parrington J. M., Welch H. M., Povey S. Diverse origins of multiple ovarian teratomas in a single individual. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7400–7404. doi: 10.1073/pnas.79.23.7400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chakravarti A., Majumder P. P., Slaugenhaupt S. A., Deka R., Warren A. C., Surti U., Ferrell R. E., Antonarakis S. E. Gene-centromere mapping and the study of non-disjunction in autosomal trisomies and ovarian teratomas. Prog Clin Biol Res. 1989;311:45–79. [PubMed] [Google Scholar]
  4. Chakravarti A., Slaugenhaupt S. A. Methods for studying recombination on chromosomes that undergo nondisjunction. Genomics. 1987 Sep;1(1):35–42. doi: 10.1016/0888-7543(87)90102-9. [DOI] [PubMed] [Google Scholar]
  5. Climie A. R., Heath L. P. Malignant degeneration of benign cystic teratomas of the ovary. Review of the literature and report of a chondrosarcoma and carcinoid tumor. Cancer. 1968 Oct;22(4):824–832. doi: 10.1002/1097-0142(196810)22:4<824::aid-cncr2820220421>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  6. Dracopoli N. C., Stanger B. Z., Ito C. Y., Call K. M., Lincoln S. E., Lander E. S., Housman D. E. A genetic linkage map of 27 loci from PND to FY on the short arm of human chromosome I. Am J Hum Genet. 1988 Oct;43(4):462–470. [PMC free article] [PubMed] [Google Scholar]
  7. Eppig J. T., Eicher E. M. Application of the ovarian teratoma mapping method in the mouse. Genetics. 1983 Apr;103(4):797–812. doi: 10.1093/genetics/103.4.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. Keats B., Ott J., Conneally M. Report of the committee on linkage and gene order. Cytogenet Cell Genet. 1989;51(1-4):459–502. doi: 10.1159/000132805. [DOI] [PubMed] [Google Scholar]
  10. Krieg P., Amtmann E., Sauer G. The simultaneous extraction of high-molecular-weight DNA and of RNA from solid tumors. Anal Biochem. 1983 Oct 15;134(2):288–294. doi: 10.1016/0003-2697(83)90299-3. [DOI] [PubMed] [Google Scholar]
  11. Linder D. Gene loss in human teratomas. Proc Natl Acad Sci U S A. 1969 Jul;63(3):699–704. doi: 10.1073/pnas.63.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Linder D., McCaw B. K., Hecht F. Parthenogenic origin of benign ovarian teratomas. N Engl J Med. 1975 Jan 9;292(2):63–66. doi: 10.1056/NEJM197501092920202. [DOI] [PubMed] [Google Scholar]
  13. Linder D., Power J. Further evidence for post-meiotic origin of teratomas in the human female. Ann Hum Genet. 1970 Jul;34(1):21–30. doi: 10.1111/j.1469-1809.1970.tb00216.x. [DOI] [PubMed] [Google Scholar]
  14. MERRIAM J. R., FROST J. N. EXCHANGE AND NONDISJUNCTION OF THE X CHROMOSOMES IN FEMALE DROSOPHILA MELANOGASTER. Genetics. 1964 Jan;49:109–122. doi: 10.1093/genetics/49.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McCaw B. K., Hecht F., Linder D., Lovrien E. W., Wyandt H., Bacon D., Clark B., Lea N. Ovarian teratomas: cytologic data. Cytogenet Cell Genet. 1976;16(1-5):391–395. doi: 10.1159/000130640. [DOI] [PubMed] [Google Scholar]
  16. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morton N. E., MacLean C. J., Lew R. Tests of hypotheses on recombination frequencies. Genet Res. 1985 Jun;45(3):279–286. doi: 10.1017/s0016672300022266. [DOI] [PubMed] [Google Scholar]
  18. O'Connell P., Lathrop G. M., Nakamura Y., Leppert M. L., Ardinger R. H., Murray J. L., Lalouel J. M., White R. Twenty-eight loci form a continuous linkage map of markers for human chromosome 1. Genomics. 1989 Jan;4(1):12–20. doi: 10.1016/0888-7543(89)90308-x. [DOI] [PubMed] [Google Scholar]
  19. Ott J., Linder D., McCaw B. K., Lovrien E. W., Hecht F. Estimating distances from the centromere by means of benign ovarian teratomas in man. Ann Hum Genet. 1976 Nov;40(2):191–196. doi: 10.1111/j.1469-1809.1976.tb00179.x. [DOI] [PubMed] [Google Scholar]
  20. PERKINS D. D. Crossing-over and interference in a multiply marked chromosome arm of Neurospora. Genetics. 1962 Sep;47:1253–1274. doi: 10.1093/genetics/47.9.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. PETERSON W. F., PREVOST E. C., EDMUNDS F. T., HUNDLEY J. M., Jr, MORRIS F. K. Benign cystic teratomas of the ovary; a clinico-statistical study of 1,007 cases with a review of the literature. Am J Obstet Gynecol. 1955 Aug;70(2):368–382. doi: 10.1016/s0002-9378(16)37681-5. [DOI] [PubMed] [Google Scholar]
  22. Parrington J. M., West L. F., Povey S. The origin of ovarian teratomas. J Med Genet. 1984 Feb;21(1):4–12. doi: 10.1136/jmg.21.1.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shahar S., Morton N. E. Origin of teratomas and twins. Hum Genet. 1986 Nov;74(3):215–218. doi: 10.1007/BF00282536. [DOI] [PubMed] [Google Scholar]
  24. Sherman S. L., King J., Robson E. B., Yee S. A revised map of chromosome 1. Ann Hum Genet. 1984 Jul;48(Pt 3):243–251. doi: 10.1111/j.1469-1809.1984.tb01021.x. [DOI] [PubMed] [Google Scholar]
  25. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  26. Surti U., Hoffner L., Chakravarti A., Ferrell R. E. Genetics and biology of human ovarian teratomas. I. Cytogenetic analysis and mechanism of origin. Am J Hum Genet. 1990 Oct;47(4):635–643. [PMC free article] [PubMed] [Google Scholar]
  27. Vassart G., Georges M., Monsieur R., Brocas H., Lequarre A. S., Christophe D. A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science. 1987 Feb 6;235(4789):683–684. doi: 10.1126/science.2880398. [DOI] [PubMed] [Google Scholar]
  28. Warren A. C., Chakravarti A., Wong C., Slaugenhaupt S. A., Halloran S. L., Watkins P. C., Metaxotou C., Antonarakis S. E. Evidence for reduced recombination on the nondisjoined chromosomes 21 in Down syndrome. Science. 1987 Aug 7;237(4815):652–654. doi: 10.1126/science.2955519. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES