Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Mar;63(3):945–950. doi: 10.1128/aem.63.3.945-950.1997

Escherichia coli mutants resistant to inactivation by high hydrostatic pressure.

K J Hauben 1, D H Bartlett 1, C C Soontjens 1, K Cornelis 1, E Y Wuytack 1, C W Michiels 1
PMCID: PMC168386  PMID: 9055412

Abstract

Alternating cycles of exposure to high pressure and outgrowth of surviving populations were used to select for highly pressure-resistant mutants of Escherichia coli MG1655. Three barotolerant mutants (LMM1010, LMM1020, and LMM1030) were isolated independently by using outgrowth temperatures of 30, 37, and 42 degrees C, respectively. Survival of these mutants after pressure treatment for 15 min at ambient temperature was 40 to 85% at 220 MPa and 0.5 to 1.5% at 800 MPa, while survival of the parent strain, MG1655, decreased from 15% at 220 MPa to 2 x 10(-8)% at 700 MPa. Heat resistance of mutants LMM1020 and LMM1030 was also altered, as evident by higher D values at 58 and 60 degrees C and reduced z values compared to those for the parent strain. D and z values for mutant LMM1010 were not significantly different from those for the parent strain. Pressure sensitivity of the mutants increased from 10 to 50 degrees C, as opposed to the parent strain, which showed a minimum around 40 degrees C. The ability of the mutants to grow at moderately elevated pressure (50 MPa) was reduced at temperatures above 37 degrees C, indicating that resistance to pressure inactivation is unrelated to barotolerant growth. The development of high levels of barotolerance as demonstrated in this work should cause concern about the safety of high-pressure food processing.

Full Text

The Full Text of this article is available as a PDF (139.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartlett D. H. Microbial life at high pressures. Sci Prog. 1992;76(301-302):479–496. [PubMed] [Google Scholar]
  2. Davies R., Sinskey A. J. Radiation-resistant mutants of Salmonella typhimurium LT2: development and characterization. J Bacteriol. 1973 Jan;113(1):133–144. doi: 10.1128/jb.113.1.133-144.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Earnshaw R. G., Appleyard J., Hurst R. M. Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. Int J Food Microbiol. 1995 Dec;28(2):197–219. doi: 10.1016/0168-1605(95)00057-7. [DOI] [PubMed] [Google Scholar]
  4. Guyer M. S., Reed R. R., Steitz J. A., Low K. B. Identification of a sex-factor-affinity site in E. coli as gamma delta. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):135–140. doi: 10.1101/sqb.1981.045.01.022. [DOI] [PubMed] [Google Scholar]
  5. Hashizume C., Kimura K., Hayashi R. Kinetic analysis of yeast inactivation by high pressure treatment at low temperatures. Biosci Biotechnol Biochem. 1995 Aug;59(8):1455–1458. doi: 10.1271/bbb.59.1455. [DOI] [PubMed] [Google Scholar]
  6. Iwahashi H., Fujii S., Obuchi K., Kaul S. C., Sato A., Komatsu Y. Hydrostatic pressure is like high temperature and oxidative stress in the damage it causes to yeast. FEMS Microbiol Lett. 1993 Mar 15;108(1):53–57. doi: 10.1016/0378-1097(93)90487-m. [DOI] [PubMed] [Google Scholar]
  7. Kato C., Inoue A., Horikoshi K. Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol. 1996 Jan;14(1):6–12. doi: 10.1016/0167-7799(96)80907-3. [DOI] [PubMed] [Google Scholar]
  8. Komatsu Y., Obuchi K., Iwahashi H., Kaul S. C., Ishimura M., Fahy G. M., Rall W. F. Deuterium oxide, dimethylsulfoxide and heat shock confer protection against hydrostatic pressure damage in yeast. Biochem Biophys Res Commun. 1991 Feb 14;174(3):1141–1147. doi: 10.1016/0006-291x(91)91539-o. [DOI] [PubMed] [Google Scholar]
  9. Marquis R. E., Bender G. R. Isolation of a variant of Streptococcus faecalis with enhanced barotolerance. Can J Microbiol. 1980 Mar;26(3):371–376. doi: 10.1139/m80-060. [DOI] [PubMed] [Google Scholar]
  10. Morita R. Y. Psychrophilic bacteria. Bacteriol Rev. 1975 Jun;39(2):144–167. doi: 10.1128/br.39.2.144-167.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. NIVEN C. F., Jr, BUETTNER L. G., EVANS J. B. Thermal tolerance studies on the heterofermentative lactobacilli that cause greening of cured meat products. Appl Microbiol. 1954 Jan;2(1):26–29. doi: 10.1128/am.2.1.26-29.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shigehisa T., Ohmori T., Saito A., Taji S., Hayashi R. Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. Int J Food Microbiol. 1991 Feb;12(2-3):207–215. doi: 10.1016/0168-1605(91)90071-v. [DOI] [PubMed] [Google Scholar]
  13. Welch T. J., Farewell A., Neidhardt F. C., Bartlett D. H. Stress response of Escherichia coli to elevated hydrostatic pressure. J Bacteriol. 1993 Nov;175(22):7170–7177. doi: 10.1128/jb.175.22.7170-7177.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wright S. J., Hill E. C. The development of radiation-resistant cultures of Escherichia coli I by a process of 'growth-irradiation cycles'. J Gen Microbiol. 1968 Apr;51(1):97–106. doi: 10.1099/00221287-51-1-97. [DOI] [PubMed] [Google Scholar]
  15. Yayanos A. A., Dietz A. S., Van Boxtel R. Obligately barophilic bacterium from the Mariana trench. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5212–5215. doi: 10.1073/pnas.78.8.5212. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES