Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1986 Sep;39(3):404–408.

Failure of lysosomal release of vitamin B12: a new complementation group causing methylmalonic aciduria (cblF).

D Watkins, D S Rosenblatt
PMCID: PMC1683971  PMID: 3766542

Abstract

A patient has been described with methylmalonic aciduria because of an inability to release free vitamin B12 from lysosomes. Complementation analysis was performed using fibroblasts from this patient and those from patients having previously described mutations causing methylmalonic aciduria (mut, cblA, cblB, cblC, and cblD). Incorporation of label from [1-14C]propionate into acid-precipitable material was elevated in heterokaryons formed by polyethylene glycol (PEG) treatment of mixed cultures of cells from the patient and all other complementation groups as compared to the incorporation in parallel cultures not treated with PEG. These results indicate that complementation occurred in all cases and support the assignment of the patient to a new complementation group that has been designated cblF.

Full text

PDF
404

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gravel R. A., Mahoney M. J., Ruddle F. H., Rosenberg L. E. Genetic complementation in heterokaryons of human fibroblasts defective in cobalamin metabolism. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3181–3185. doi: 10.1073/pnas.72.8.3181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  3. McInnes R. R., Shih V., Chilton S. Interallelic complementation in an inborn error of metabolism: genetic heterogeneity in argininosuccinate lyase deficiency. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4480–4484. doi: 10.1073/pnas.81.14.4480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Rosenblatt D. S., Cooper B. A., Pottier A., Lue-Shing H., Matiaszuk N., Grauer K. Altered vitamin B12 metabolism in fibroblasts from a patient with megaloblastic anemia and homocystinuria due to a new defect in methionine biosynthesis. J Clin Invest. 1984 Dec;74(6):2149–2156. doi: 10.1172/JCI111641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rosenblatt D. S., Hosack A., Matiaszuk N. V., Cooper B. A., Laframboise R. Defect in vitamin B12 release from lysosomes: newly described inborn error of vitamin B12 metabolism. Science. 1985 Jun 14;228(4705):1319–1321. doi: 10.1126/science.4001945. [DOI] [PubMed] [Google Scholar]
  6. Schuh S., Rosenblatt D. S., Cooper B. A., Schroeder M. L., Bishop A. J., Seargeant L. E., Haworth J. C. Homocystinuria and megaloblastic anemia responsive to vitamin B12 therapy. An inborn error of metabolism due to a defect in cobalamin metabolism. N Engl J Med. 1984 Mar 15;310(11):686–690. doi: 10.1056/NEJM198403153101104. [DOI] [PubMed] [Google Scholar]
  7. Willard H. F., Mellman I. S., Rosenberg L. E. Genetic complementation among inherited deficiencies of methylmalonyl-CoA mutase activity: evidence for a new class of human cobalamin mutant. Am J Hum Genet. 1978 Jan;30(1):1–13. [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES