Abstract
The allele frequency distribution of two highly polymorphic DNA sequences has been determined in three ethnic groups (American blacks, Caucasoids, and Hispanics) from the New York metropolitan area. The two loci examined were D14S1 and the flanking region of HRAS-1. The former was analyzed in EcoRI-digested DNA and the latter in TaqI-digested DNA. Approximately 700 DNA samples from unrelated individuals were digested with each of these enzymes and hybridized with the appropriate recombinant DNA probes. The size range of the DNA fragments detected for the D14S1 polymorphism varied from 14.3 to 32.5 kilobase pairs (kbp). The number of alleles identified under the experimental conditions used in this study was more than 40. For the HRAS-1 polymorphism, we have detected 18 different alleles varying in size from 1.85 to 4.5 kbp. Although the number of alleles observed in the different ethnic groups examined was very similar, the relative frequency of them varied significantly. The results presented here can be used as the basis for the utilization of DNA RFLP for the purpose of identity, such as paternity determinations or the analysis of forensic material. As an example, we have compared the results of paternity cases analyzed by HLA typing with those obtained with these two DNA polymorphisms. The values of paternity index and power of exclusion were similar by both procedures.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balazs I., Purrello M., Rubinstein P., Alhadeff B., Siniscalco M. Highly polymorphic DNA site D14S1 maps to the region of Burkitt lymphoma translocation and is closely linked to the heavy chain gamma 1 immunoglobulin locus. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7395–7399. doi: 10.1073/pnas.79.23.7395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capon D. J., Chen E. Y., Levinson A. D., Seeburg P. H., Goeddel D. V. Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature. 1983 Mar 3;302(5903):33–37. doi: 10.1038/302033a0. [DOI] [PubMed] [Google Scholar]
- Elder J. K., Southern E. M. Measurement of DNA length by gel electrophoresis II: Comparison of methods for relating mobility to fragment length. Anal Biochem. 1983 Jan;128(1):227–231. doi: 10.1016/0003-2697(83)90369-x. [DOI] [PubMed] [Google Scholar]
- FISHER R. A. Standard calculations for evaluating a blood-group system. Heredity (Edinb) 1951 Apr;5(1):95–102. doi: 10.1038/hdy.1951.5. [DOI] [PubMed] [Google Scholar]
- Gerald P. S., Grzeschik K. H. Report of the Committee on the Genetic Constitution of Chromosomes 10, 11, and 12. Cytogenet Cell Genet. 1984;37(1-4):103–126. doi: 10.1159/000132006. [DOI] [PubMed] [Google Scholar]
- Giusti A., Baird M., Pasquale S., Balazs I., Glassberg J. Application of deoxyribonucleic acid (DNA) polymorphisms to the analysis of DNA recovered from sperm. J Forensic Sci. 1986 Apr;31(2):409–417. [PubMed] [Google Scholar]
- Kanter E., Baird M., Shaler R., Balazs I. Analysis of restriction fragment length polymorphisms in deoxyribonucleic acid (DNA) recovered from dried bloodstains. J Forensic Sci. 1986 Apr;31(2):403–408. [PubMed] [Google Scholar]
- Krontiris T. G., DiMartino N. A., Colb M., Parkinson D. R. Unique allelic restriction fragments of the human Ha-ras locus in leukocyte and tumour DNAs of cancer patients. 1985 Jan 31-Feb 6Nature. 313(6001):369–374. doi: 10.1038/313369a0. [DOI] [PubMed] [Google Scholar]
- Martel J. L., Jaramillo S., Allen F. H., Jr, Rubinstein P. Serology for automated cytotoxicity assays. Contrast fluorescence test. Vox Sang. 1974;27(1):13–20. doi: 10.1111/j.1423-0410.1974.tb02384.x. [DOI] [PubMed] [Google Scholar]
- White R., Leppert M., Bishop D. T., Barker D., Berkowitz J., Brown C., Callahan P., Holm T., Jerominski L. Construction of linkage maps with DNA markers for human chromosomes. Nature. 1985 Jan 10;313(5998):101–105. doi: 10.1038/313101a0. [DOI] [PubMed] [Google Scholar]
- Willard H. F., Skolnick M. H., Pearson P. L., Mandel J. L. Report of the Committee on Human Gene Mapping by Recombinant DNA Techniques. Cytogenet Cell Genet. 1985;40(1-4):360–489. doi: 10.1159/000132180. [DOI] [PubMed] [Google Scholar]
- Wyman A. R., White R. A highly polymorphic locus in human DNA. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6754–6758. doi: 10.1073/pnas.77.11.6754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyman A. R., Wolfe L. B., Botstein D. Propagation of some human DNA sequences in bacteriophage lambda vectors requires mutant Escherichia coli hosts. Proc Natl Acad Sci U S A. 1985 May;82(9):2880–2884. doi: 10.1073/pnas.82.9.2880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Martinville B., Giacalone J., Shih C., Weinberg R. A., Francke U. Oncogene from human EJ bladder carcinoma is located on the short arm of chromosome 11. Science. 1983 Feb 4;219(4584):498–501. doi: 10.1126/science.6297001. [DOI] [PubMed] [Google Scholar]