Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Mar;63(3):1102–1106. doi: 10.1128/aem.63.3.1102-1106.1997

Local variations in the distribution and prevalence of Borrelia burgdorferi sensu lato genomospecies in Ixodes ricinus ticks.

F Kirstein 1, S Rijpkema 1, M Molkenboer 1, J S Gray 1
PMCID: PMC168399  PMID: 9055424

Abstract

Unfed nymphal and adult Ixodes ricinus ticks were collected from five locations within the 10,000-ha Killarney National Park, Ireland. The distribution and prevalence of the genomospecies of Borrelia burgdorferi sensu lato in the ticks were investigated by PCR amplification of the intergenic spacer region between the 5S and 23S rRNA genes and by reverse line blotting with genomospecies-specific oligonucleotide probes. The prevalence of ticks infected with B. burgdorferi sensu lato was significantly variable between the five locations, ranging from 11.5 to 28.9%. Four genomospecies were identified as B. burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, and VS116. Additionally, untypeable B. burgdorferi sensu lato genomospecies were identified in two nymphs. VS116 was the most prevalent of the genomospecies and was identified in 50% of the infected ticks. Prevalences of B. garinii and B. burgdorferi sensu stricto were similar (17 and 18%, respectively); however, significant differences were observed in the prevalence of these genomospecies in mixed infections (58.8 and 23.5%, respectively). Notably, the prevalence of B. afzelii was low, comprising 9.6 and 7.4%, respectively, of single and mixed infections. Significant variability was observed in the distribution and prevalence of B. burgdorferi sensu lato genomospecies between locations in the park, and the diversity and prevalence of B. burgdorferi sensu lato genomospecies was typically associated with woodland. The distributions of B. burgdorferi sensu lato genomospecies were similar in wooded areas and in areas bordering woodland, although the prevalence of B. burgdorferi sensu lato infection was typically reduced. Spatial distributions vegetation composition, and host cenosis of the habitats were identified as factors which may affect the distribution and prevalence of B. burgdorferi sensu lato genomospecies within the park.

Full Text

The Full Text of this article is available as a PDF (362.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthonissen F. M., De Kesel M., Hoet P. P., Bigaignon G. H. Evidence for the involvement of different genospecies of Borrelia in the clinical outcome of Lyme disease in Belgium. Res Microbiol. 1994 May;145(4):327–331. doi: 10.1016/0923-2508(94)90187-2. [DOI] [PubMed] [Google Scholar]
  2. Assous M. V., Postic D., Paul G., Névot P., Baranton G. Western blot analysis of sera from Lyme borreliosis patients according to the genomic species of the Borrelia strains used as antigens. Eur J Clin Microbiol Infect Dis. 1993 Apr;12(4):261–268. doi: 10.1007/BF01967256. [DOI] [PubMed] [Google Scholar]
  3. Baranton G., Postic D., Saint Girons I., Boerlin P., Piffaretti J. C., Assous M., Grimont P. A. Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol. 1992 Jul;42(3):378–383. doi: 10.1099/00207713-42-3-378. [DOI] [PubMed] [Google Scholar]
  4. Bunikis J., Olsén B., Fingerle V., Bonnedahl J., Wilske B., Bergström S. Molecular polymorphism of the lyme disease agent Borrelia garinii in northern Europe is influenced by a novel enzootic Borrelia focus in the North Atlantic. J Clin Microbiol. 1996 Feb;34(2):364–368. doi: 10.1128/jcm.34.2.364-368.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P. Lyme disease-a tick-borne spirochetosis? Science. 1982 Jun 18;216(4552):1317–1319. doi: 10.1126/science.7043737. [DOI] [PubMed] [Google Scholar]
  6. Demaerschalck I., Ben Messaoud A., De Kesel M., Hoyois B., Lobet Y., Hoet P., Bigaignon G., Bollen A., Godfroid E. Simultaneous presence of different Borrelia burgdorferi genospecies in biological fluids of Lyme disease patients. J Clin Microbiol. 1995 Mar;33(3):602–608. doi: 10.1128/jcm.33.3.602-608.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dressler F., Ackermann R., Steere A. C. Antibody responses to the three genomic groups of Borrelia burgdorferi in European Lyme borreliosis. J Infect Dis. 1994 Feb;169(2):313–318. doi: 10.1093/infdis/169.2.313. [DOI] [PubMed] [Google Scholar]
  8. Gray J. S., Kahl O., Janetzki C., Stein J., Guy E. The spatial distribution of Borrelia burgdorferi-infected Ixodes ricinus in the Connemara region of County Galway, Ireland. Exp Appl Acarol. 1995 Mar;19(3):163–172. doi: 10.1007/BF00046288. [DOI] [PubMed] [Google Scholar]
  9. Gray J. S., Kahl O., Janetzki C., Stein J. Studies on the ecology of Lyme disease in a deer forest in County Galway, Ireland. J Med Entomol. 1992 Nov;29(6):915–920. doi: 10.1093/jmedent/29.6.915. [DOI] [PubMed] [Google Scholar]
  10. Gustafson R. Epidemiological studies of Lyme borreliosis and tick-borne encephalitis. Scand J Infect Dis Suppl. 1994;92:1–63. [PubMed] [Google Scholar]
  11. Guttman D. S., Wang P. W., Wang I. N., Bosler E. M., Luft B. J., Dykhuizen D. E. Multiple infections of Ixodes scapularis ticks by Borrelia burgdorferi as revealed by single-strand conformation polymorphism analysis. J Clin Microbiol. 1996 Mar;34(3):652–656. doi: 10.1128/jcm.34.3.652-656.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guy E. C., Stanek G. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J Clin Pathol. 1991 Jul;44(7):610–611. doi: 10.1136/jcp.44.7.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hubálek Z., Halouzka J., Juricová Z., Svobodová S. Seasonal distribution of borreliae in Ixodes ricinus ticks. Zentralbl Bakteriol. 1994 Jan;280(3):423–431. doi: 10.1016/s0934-8840(11)80607-9. [DOI] [PubMed] [Google Scholar]
  14. Kurtenbach K., Kampen H., Dizij A., Arndt S., Seitz H. M., Schaible U. E., Simon M. M. Infestation of rodents with larval Ixodes ricinus (Acari: Ixodidae) is an important factor in the transmission cycle of Borrelia burgdorferi s.l. in German woodlands. J Med Entomol. 1995 Nov;32(6):807–817. doi: 10.1093/jmedent/32.6.807. [DOI] [PubMed] [Google Scholar]
  15. Lacombe E., Rand P. W., Smith R. P., Jr Disparity of Borrelia burgdorferi infection rates of adult Ixodes dammini on deer and vegetation. J Infect Dis. 1993 May;167(5):1236–1238. doi: 10.1093/infdis/167.5.1236. [DOI] [PubMed] [Google Scholar]
  16. Mejlon H. A., Jaenson T. G. Seasonal prevalence of Borrelia burgdorferi in Ixodes ricinus in different vegetation types in Sweden. Scand J Infect Dis. 1993;25(4):449–456. doi: 10.3109/00365549309008526. [DOI] [PubMed] [Google Scholar]
  17. Olsén B., Jaenson T. G., Bergström S. Prevalence of Borrelia burgdorferi sensu lato-infected ticks on migrating birds. Appl Environ Microbiol. 1995 Aug;61(8):3082–3087. doi: 10.1128/aem.61.8.3082-3087.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Postic D., Assous M. V., Grimont P. A., Baranton G. Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. Int J Syst Bacteriol. 1994 Oct;44(4):743–752. doi: 10.1099/00207713-44-4-743. [DOI] [PubMed] [Google Scholar]
  19. Rijpkema S. G., Molkenboer M. J., Schouls L. M., Jongejan F., Schellekens J. F. Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol. 1995 Dec;33(12):3091–3095. doi: 10.1128/jcm.33.12.3091-3095.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rijpkema S., Nieuwenhuijs J., Franssen F. F., Jongejan F. Infection rates of Borrelia burgdorferi in different instars of Ixodes ricinus ticks from the Dutch North Sea Island of Ameland. Exp Appl Acarol. 1994 Sep;18(9):531–542. doi: 10.1007/BF00058936. [DOI] [PubMed] [Google Scholar]
  21. van Dam A. P., Kuiper H., Vos K., Widjojokusumo A., de Jongh B. M., Spanjaard L., Ramselaar A. C., Kramer M. D., Dankert J. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis. 1993 Oct;17(4):708–717. doi: 10.1093/clinids/17.4.708. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES