Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Mar;63(3):1118–1123. doi: 10.1128/aem.63.3.1118-1123.1997

Identification of bacterial cells by chromosomal painting.

B D Lanoil 1, S J Giovannoni 1
PMCID: PMC168401  PMID: 9055426

Abstract

Chromosomal painting is a technique for the microscopic localization of genetic material. It has been applied at the subcellular level to identify regions of eukaryotic chromosomes. Here we describe the development of bacterial chromosomal painting (BCP), a related technology for the identification of bacterial cells. Purified genomic DNAs from six bacterial strains were labeled by nick translation with the fluorochrome Fluor-X, Cy3, or Cy5. The average size of the labeled fragments was ca. 50 to 200 bp. The probes were hybridized to formaldehyde-fixed microbial cells attached to slides and visualized by fluorescence microscopy. In reciprocal comparisons, distantly related members of the class Proteobacteria (Escherichia coli and Oceanospirillum linum), different species of the genus Bacillus (B. subtilis and B. megaterium), and different serotypes of the subspecies Salmonella choleraesuis subsp. choleraesuis (serotype typhimurium LT2 and serotype typhi Ty2) could easily be distinguished. A combination of two probes, each labeled with a different fluorochrome, was used successfully to simultaneously identify two cell types in a mixture. Lysozyme treatment was required for the identification of Bacillus spp., and RNase digestion and pepsin digestion were found to enhance signal strength and specificity for all cell types tested. Chromosome in situ suppression, a technique that removes cross-hybridizing fragments from the probe, was necessary for the differentiation of the Salmonella serotypes but was not required to distinguish the more distantly related taxa. BCP may have applications in diverse branches of microbiology where the objective is the identification of bacterial cells.

Full Text

The Full Text of this article is available as a PDF (723.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carter N. P. Cytogenetic analysis by chromosome painting. Cytometry. 1994 Mar 15;18(1):2–10. doi: 10.1002/cyto.990180103. [DOI] [PubMed] [Google Scholar]
  3. Carter N. P., Ferguson-Smith M. A., Perryman M. T., Telenius H., Pelmear A. H., Leversha M. A., Glancy M. T., Wood S. L., Cook K., Dyson H. M. Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J Med Genet. 1992 May;29(5):299–307. doi: 10.1136/jmg.29.5.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeLong E. F., Wickham G. S., Pace N. R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989 Mar 10;243(4896):1360–1363. doi: 10.1126/science.2466341. [DOI] [PubMed] [Google Scholar]
  5. Grimont P. A. Use of DNA reassociation in bacterial classification. Can J Microbiol. 1988 Apr;34(4):541–546. doi: 10.1139/m88-092. [DOI] [PubMed] [Google Scholar]
  6. Hodson R. E., Dustman W. A., Garg R. P., Moran M. A. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl Environ Microbiol. 1995 Nov;61(11):4074–4082. doi: 10.1128/aem.61.11.4074-4082.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Howell R. T., Millener R., Thorne S., O'Loughlin J., Brassey J., McDermott A. Elucidation of structural abnormalities of the X chromosome using fluorescence in situ hybridisation with a Y chromosome painting probe. J Med Genet. 1994 Mar;31(3):206–208. doi: 10.1136/jmg.31.3.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hulten M. A., Gould C. P., Goldman A. S., Waters J. J. Chromosome in situ suppression hybridisation in clinical cytogenetics. J Med Genet. 1991 Sep;28(9):577–582. doi: 10.1136/jmg.28.9.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kelly R. B., Cozzarelli N. R., Deutscher M. P., Lehman I. R., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXXII. Replication of duplex deoxyribonucleic acid by polymerase at a single strand break. J Biol Chem. 1970 Jan 10;245(1):39–45. [PubMed] [Google Scholar]
  10. Kemp P. F., Lee S., Laroche J. Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl Environ Microbiol. 1993 Aug;59(8):2594–2601. doi: 10.1128/aem.59.8.2594-2601.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Landegent J. E., Jansen in de Wal N., van Ommen G. J., Baas F., de Vijlder J. J., van Duijn P., Van der Ploeg M. Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization. Nature. 1985 Sep 12;317(6033):175–177. doi: 10.1038/317175a0. [DOI] [PubMed] [Google Scholar]
  12. Lawrence J. B., Singer R. H., McNeil J. A. Interphase and metaphase resolution of different distances within the human dystrophin gene. Science. 1990 Aug 24;249(4971):928–932. doi: 10.1126/science.2203143. [DOI] [PubMed] [Google Scholar]
  13. Lichter P., Cremer T., Borden J., Manuelidis L., Ward D. C. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet. 1988 Nov;80(3):224–234. doi: 10.1007/BF01790090. [DOI] [PubMed] [Google Scholar]
  14. Lichter P., Cremer T., Tang C. J., Watkins P. C., Manuelidis L., Ward D. C. Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9664–9668. doi: 10.1073/pnas.85.24.9664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lichter P., Tang C. J., Call K., Hermanson G., Evans G. A., Housman D., Ward D. C. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science. 1990 Jan 5;247(4938):64–69. doi: 10.1126/science.2294592. [DOI] [PubMed] [Google Scholar]
  16. Loidl J., Klein F., Scherthan H. Homologous pairing is reduced but not abolished in asynaptic mutants of yeast. J Cell Biol. 1994 Jun;125(6):1191–1200. doi: 10.1083/jcb.125.6.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pandita T. K., Gregoire V., Dhingra K., Hittelman W. N. Effect of chromosome size on aberration levels caused by gamma radiation as detected by fluorescence in situ hybridization. Cytogenet Cell Genet. 1994;67(2):94–101. doi: 10.1159/000133807. [DOI] [PubMed] [Google Scholar]
  19. Pinkel D., Landegent J., Collins C., Fuscoe J., Segraves R., Lucas J., Gray J. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9138–9142. doi: 10.1073/pnas.85.23.9138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Salvi R. J., Ahroon W., Saunders S. S., Arnold S. A. Evoked potentials: computer-automated threshold-tracking procedure using an objective detection criterion. Ear Hear. 1987 Jun;8(3):151–156. [PubMed] [Google Scholar]
  21. Scherthan H., Loidl J., Schuster T., Schweizer D. Meiotic chromosome condensation and pairing in Saccharomyces cerevisiae studied by chromosome painting. Chromosoma. 1992 Oct;101(10):590–595. doi: 10.1007/BF00360535. [DOI] [PubMed] [Google Scholar]
  22. Schröck E., du Manoir S., Veldman T., Schoell B., Wienberg J., Ferguson-Smith M. A., Ning Y., Ledbetter D. H., Bar-Am I., Soenksen D. Multicolor spectral karyotyping of human chromosomes. Science. 1996 Jul 26;273(5274):494–497. doi: 10.1126/science.273.5274.494. [DOI] [PubMed] [Google Scholar]
  23. Speicher M. R., Gwyn Ballard S., Ward D. C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet. 1996 Apr;12(4):368–375. doi: 10.1038/ng0496-368. [DOI] [PubMed] [Google Scholar]
  24. Stein J. L., Marsh T. L., Wu K. Y., Shizuya H., DeLong E. F. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol. 1996 Feb;178(3):591–599. doi: 10.1128/jb.178.3.591-599.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vega M., Abbo S., Feldman M., Levy A. A. Chromosome painting in plants: in situ hybridization with a DNA probe from a specific microdissected chromosome arm of common wheat. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12041–12045. doi: 10.1073/pnas.91.25.12041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ward B. B., Carlucci A. F. Marine ammonia- and nitrite-oxidizing bacteria: serological diversity determined by immunofluorescence in culture and in the environment. Appl Environ Microbiol. 1985 Aug;50(2):194–201. doi: 10.1128/aem.50.2.194-201.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. du Manoir S., Schröck E., Bentz M., Speicher M. R., Joos S., Ried T., Lichter P., Cremer T. Quantitative analysis of comparative genomic hybridization. Cytometry. 1995 Jan 1;19(1):27–41. doi: 10.1002/cyto.990190105. [DOI] [PubMed] [Google Scholar]
  28. van de Rijke F. M., Vrolijk H., Sloos W., Tanke H. J., Raap A. K. Sample preparation and in situ hybridization techniques for automated molecular cytogenetic analysis of white blood cells. Cytometry. 1996 Jun 1;24(2):151–157. doi: 10.1002/(SICI)1097-0320(19960601)24:2<151::AID-CYTO7>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES