Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Apr;63(4):1261–1267. doi: 10.1128/aem.63.4.1261-1267.1997

Intraspecific genetic diversity of Oenococcus oeni as derived from DNA fingerprinting and sequence analyses.

A I Zavaleta 1, A J Martínez-Murcia 1, F Rodríguez-Valera 1
PMCID: PMC168419  PMID: 9097422

Abstract

The intraspecific genetic diversity of Oenococcus oeni, the key organism in the malolactic fermentation of wine, has been evaluated by random amplified polymorphic DNA (RAPD), ribotyping, small-plasmid content, and sequencing of RAPD markers with widespread distribution among the strains. Collection strains representing the diversity of this species have been studied together with some new isolates, many of which were obtained from wines produced by spontaneous malolactic fermentation. The RAPD profiles were strain specific and discerned two main groups of strains coincident with clusters obtained by macrorestriction typing in a previous work. Ribotyping and the conservation of RAPD markers indicates that O. oeni is a relatively homogeneous species. Furthermore, identical DNA sequences of some RAPD markers among strains representative of the most divergent RAPD clusters indicates that O. oeni is indeed a phylogenetically tight group, probably corresponding to a single clone, or clonal line of descent, specialized to grow in the wine environment and universally spread.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dicks L. M., Dellaglio F., Collins M. D. Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov.. Int J Syst Bacteriol. 1995 Apr;45(2):395–397. doi: 10.1099/00207713-45-2-395. [DOI] [PubMed] [Google Scholar]
  2. Fremaux C., Aigle M., Lonvaud-Funel A. Sequence analysis of Leuconostoc oenos DNA: organization of pLo13, a cryptic plasmid. Plasmid. 1993 Nov;30(3):212–223. doi: 10.1006/plas.1993.1053. [DOI] [PubMed] [Google Scholar]
  3. García-Martínez J., Martínez-Murcia A. J., Rodríguez-Valera F., Zorraquino A. Molecular evidence supporting the existence of two major groups in uropathogenic Escherichia coli. FEMS Immunol Med Microbiol. 1996 Jul;14(4):231–244. doi: 10.1111/j.1574-695X.1996.tb00291.x. [DOI] [PubMed] [Google Scholar]
  4. Garvie E. I. Lactic dehydrogenases of strains of the genus Leuconostoc. J Gen Microbiol. 1969 Sep;58(1):85–94. doi: 10.1099/00221287-58-1-85. [DOI] [PubMed] [Google Scholar]
  5. Garvie E. I. Leuconostoc oenos sp.nov. J Gen Microbiol. 1967 Sep;48(3):431–438. doi: 10.1099/00221287-48-3-431. [DOI] [PubMed] [Google Scholar]
  6. Hall L. M. Are point mutations or DNA rearrangements responsible for the restriction fragment length polymorphisms that are used to type bacteria? Microbiology. 1994 Jan;140(Pt 1):197–204. doi: 10.1099/13500872-140-1-197. [DOI] [PubMed] [Google Scholar]
  7. Janse B. J., Wingfield B. D., Pretorius I. S., van Vuuren H. J. Plasmids in Leuconostoc oenos. Plasmid. 1987 Mar;17(2):173–175. doi: 10.1016/0147-619x(87)90025-4. [DOI] [PubMed] [Google Scholar]
  8. Karaolis D. K., Lan R., Reeves P. R. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae. J Bacteriol. 1995 Jun;177(11):3191–3198. doi: 10.1128/jb.177.11.3191-3198.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lawrence L. M., Gilmour A. Characterization of Listeria monocytogenes isolated from poultry products and from the poultry-processing environment by random amplification of polymorphic DNA and multilocus enzyme electrophoresis. Appl Environ Microbiol. 1995 Jun;61(6):2139–2144. doi: 10.1128/aem.61.6.2139-2144.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Martinez-Murcia A. J., Collins M. D. A phylogenetic analysis of an atypical leuconostoc: description of Leuconostoc fallax sp. nov. FEMS Microbiol Lett. 1991 Jul 15;66(1):55–59. doi: 10.1016/0378-1097(91)90420-f. [DOI] [PubMed] [Google Scholar]
  11. Martinez-Murcia A. J., Collins M. D. A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16 S rRNA. FEMS Microbiol Lett. 1990 Jun 15;58(1):73–83. doi: 10.1016/0378-1097(90)90106-z. [DOI] [PubMed] [Google Scholar]
  12. Martinez-Murcia A. J., Harland N. M., Collins M. D. Phylogenetic analysis of some leuconostocs and related organisms as determined from large-subunit rRNA gene sequences: assessment of congruence of small- and large-subunit rRNA derived trees. J Appl Bacteriol. 1993 May;74(5):532–541. [PubMed] [Google Scholar]
  13. Martínez-Murcia A. J., Rodríguez-Valera F. The use of arbitrarily primed PCR (AP-PCR) to develop taxa specific DNA probes of known sequence. FEMS Microbiol Lett. 1994 Dec 15;124(3):265–269. doi: 10.1111/j.1574-6968.1994.tb07295.x. [DOI] [PubMed] [Google Scholar]
  14. Ménard C., Mouton C. Clonal diversity of the taxon Porphyromonas gingivalis assessed by random amplified polymorphic DNA fingerprinting. Infect Immun. 1995 Jul;63(7):2522–2531. doi: 10.1128/iai.63.7.2522-2531.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  18. Tenreiro R., Santos M. A., Paveia H., Vieira G. Inter-strain relationships among wine leuconostocs and their divergence from other Leuconostoc species, as revealed by low frequency restriction fragment analysis of genomic DNA. J Appl Bacteriol. 1994 Sep;77(3):271–280. doi: 10.1111/j.1365-2672.1994.tb03074.x. [DOI] [PubMed] [Google Scholar]
  19. Vandenesch F., Perrier-Gros-Claude J. D., Bes M., Fuhrmann C., Delorme V., Mouren C., Etienne J. Staphylococcus pasteuri-specific oligonucleotide probes derived from a random amplified DNA fragment. FEMS Microbiol Lett. 1995 Oct 1;132(1-2):147–152. doi: 10.1111/j.1574-6968.1995.tb07824.x. [DOI] [PubMed] [Google Scholar]
  20. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zavaleta A. I., Martínez-Murcia A. J., Rodríguez-Valera F. 16S-23S rDNA intergenic sequences indicate that Leuconostoc oenos is phylogenetically homogeneous. Microbiology. 1996 Aug;142(Pt 8):2105–2114. doi: 10.1099/13500872-142-8-2105. [DOI] [PubMed] [Google Scholar]
  23. van Belkum A. DNA fingerprinting of medically important microorganisms by use of PCR. Clin Microbiol Rev. 1994 Apr;7(2):174–184. doi: 10.1128/cmr.7.2.174. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES