Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Apr;63(4):1284–1287. doi: 10.1128/aem.63.4.1284-1287.1997

Characterization of an intracellular oligopeptidase from Lactobacillus paracasei.

R O Tobiassen 1, T Sørhaug 1, L Stepaniak 1
PMCID: PMC168422  PMID: 9097425

Abstract

An intracellular oligopeptidase from Lactobacillus paracasei Lc-01 has been purified to homogeneity by Fast Flow Q Sepharose, hydroxyapatite, and Mono Q chromatography. The molecular mass of the enzyme was determined to be 140 kDa by gel filtration and approximately 30 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and SDS-capillary electrophoresis. The pI of the enzyme was at pH 4.5. The enzyme expressed maximum activity at pH 8.0 and 40 degrees C. Oligopeptidase activity on bradykinin was inhibited strongly by 1,10-phenantroline and EDTA and partly by p-chloromercuribenzoic acid but not by phosphoramidon or phenylmethylsulfonyl fluoride. Marked inhibition by beta-casein fragment 58 to 72 was demonstrated. The enzyme showed neither general aminopeptidase nor caseinolytic activity, and it degraded only oligopeptides between 8 and 13 amino acids. The enzyme readily hydrolyzed the Phe-Ser and Pro-Phe bonds of bradykinin; the Phe-His bond of angiotensin I; the Pro-Gln, Gln-Phe, and Phe-Gly bonds of substance P; and the Pro-Tyr bond of neurotensin. Weak activity toward the Ala-Tyr and Pro-Ser bonds of alpha(s1)-casein fragment 157 to 164, was observed. The N-terminal amino acid sequence of the oligopeptidase showed a high degree of homology to the lactacin B inducer from Lactobacillus acidophilus.

Full Text

The Full Text of this article is available as a PDF (156.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artavanis-Tsakonas S., Harris J. I. Primary structure of triosephosphate isomerase from Bacillus stearothermophilus. Eur J Biochem. 1980 Jul;108(2):599–611. doi: 10.1111/j.1432-1033.1980.tb04755.x. [DOI] [PubMed] [Google Scholar]
  2. Barefoot S. F., Chen Y. R., Hughes T. A., Bodine A. B., Shearer M. Y., Hughes M. D. Identification and purification of a protein that induces production of the Lactobacillus acidophilus bacteriocin lactacin B. Appl Environ Microbiol. 1994 Oct;60(10):3522–3528. doi: 10.1128/aem.60.10.3522-3528.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Exterkate F. A., Alting A. C., Slangen C. J. Specificity of two genetically related cell-envelope proteinases of Lactococcus lactis subsp. cremoris towards alpha s1-casein-(1-23)-fragment. Biochem J. 1991 Jan 1;273(Pt 1):135–139. doi: 10.1042/bj2730135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fox P. F., Singh T. K., McSweeney P. L. Biogenesis of flavour compounds in cheese. Adv Exp Med Biol. 1995;367:59–98. doi: 10.1007/978-1-4615-1913-3_6. [DOI] [PubMed] [Google Scholar]
  5. Maurizi M. R. Proteases and protein degradation in Escherichia coli. Experientia. 1992 Feb 15;48(2):178–201. doi: 10.1007/BF01923511. [DOI] [PubMed] [Google Scholar]
  6. Mierau I., Tan P. S., Haandrikman A. J., Mayo B., Kok J., Leenhouts K. J., Konings W. N., Venema G. Cloning and sequencing of the gene for a lactococcal endopeptidase, an enzyme with sequence similarity to mammalian enkephalinase. J Bacteriol. 1993 Apr;175(7):2087–2096. doi: 10.1128/jb.175.7.2087-2096.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Monnet V., Nardi M., Chopin A., Chopin M. C., Gripon J. C. Biochemical and genetic characterization of PepF, an oligopeptidase from Lactococcus lactis. J Biol Chem. 1994 Dec 23;269(51):32070–32076. [PubMed] [Google Scholar]
  8. Pritchard G. G., Coolbear T. The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):179–206. doi: 10.1111/j.1574-6976.1993.tb00018.x. [DOI] [PubMed] [Google Scholar]
  9. Pritchard G. G., Freebairn A. D., Coolbear T. Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris SK11. Microbiology. 1994 Apr;140(Pt 4):923–930. doi: 10.1099/00221287-140-4-923. [DOI] [PubMed] [Google Scholar]
  10. Sasaki M., Bosman B. W., Tan P. S. Immunological and electrophoretic study of the proteolytic enzymes from various Lactococcus and Lactobacillus strains. J Dairy Res. 1995 Nov;62(4):611–620. doi: 10.1017/s0022029900031344. [DOI] [PubMed] [Google Scholar]
  11. Tan P. S., Chapot-Chartier M. P., Pos K. M., Rousseau M., Boquien C. Y., Gripon J. C., Konings W. N. Localization of peptidases in lactococci. Appl Environ Microbiol. 1992 Jan;58(1):285–290. doi: 10.1128/aem.58.1.285-290.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tan P. S., Poolman B., Konings W. N. Proteolytic enzymes of Lactococcus lactis. J Dairy Res. 1993 May;60(2):269–286. doi: 10.1017/s0022029900027606. [DOI] [PubMed] [Google Scholar]
  13. Tan P. S., Pos K. M., Konings W. N. Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl Environ Microbiol. 1991 Dec;57(12):3593–3599. doi: 10.1128/aem.57.12.3593-3599.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Twining S. S. Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Anal Biochem. 1984 Nov 15;143(1):30–34. doi: 10.1016/0003-2697(84)90553-0. [DOI] [PubMed] [Google Scholar]
  15. Yan T. R., Azuma N., Kaminogawa S., Yamauchi K. Purification and Characterization of a Substrate-Size-Recognizing Metalloendopeptidase from Streptococcus cremoris H61. Appl Environ Microbiol. 1987 Oct;53(10):2296–2302. doi: 10.1128/aem.53.10.2296-2302.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yan T. R., Azuma N., Kaminogawa S., Yamauchi K. Purification and characterization of a novel metalloendopeptidase from Streptococcus cremoris H61. A metalloendopeptidase that recognizes the size of its substrate. Eur J Biochem. 1987 Mar 2;163(2):259–265. doi: 10.1111/j.1432-1033.1987.tb10796.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES