Abstract
Chlamydia pneumoniae is an intracellular respiratory pathogen, which, similar to Legionella, might have developed mechanisms to escape the intracellular bactericidal activity of both human host cells and amoeba. We therefore investigated the intracellular growth and survival of C. pneumoniae in Acanthamoeba castellanii by using cell culture, immunofluorescence microscopy, and electron microscopy. A castellanii was incubated with purified elementary bodies of C. pneumoniae TW 183 at a concentration of 10(6) inclusion-forming units (IFU)/ml to give a ratio of approximately 1 IFU of C. pneumoniae per amoeba. Quantitative determination of chlamydial growth within A. castellanii revealed viable and infective C. pneumoniae in the range of 10(4) to 10(5) IFU/ml between days 7 and 14 postinfection. Immunofluorescence analysis and transmission electron microscopy with subsequent immunogold staining confirmed evidence of infection of the amoebae by C. Pneumoniae and additionally revealed that C. pneumoniae entered the typical growth cycle. Our results show that amoebae allow the survival of C. pneumoniae, suggesting that amoebae may serve as an additional reservoir for Chlamydia or Chlamydia-related organisms.
Full Text
The Full Text of this article is available as a PDF (642.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aldous M. B., Grayston J. T., Wang S. P., Foy H. M. Seroepidemiology of Chlamydia pneumoniae TWAR infection in Seattle families, 1966-1979. J Infect Dis. 1992 Sep;166(3):646–649. doi: 10.1093/infdis/166.3.646. [DOI] [PubMed] [Google Scholar]
- Amann R., Springer N., Schönhuber W., Ludwig W., Schmid E. N., Müller K. D., Michel R. Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol. 1997 Jan;63(1):115–121. doi: 10.1128/aem.63.1.115-121.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J., Brown M. R. Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology. 1994 Jun;140(Pt 6):1253–1259. doi: 10.1099/00221287-140-6-1253. [DOI] [PubMed] [Google Scholar]
- Beatty W. L., Morrison R. P., Byrne G. I. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev. 1994 Dec;58(4):686–699. doi: 10.1128/mr.58.4.686-699.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berdal B. P., Scheel O., Ogaard A. R., Hoel T., Gutteberg T. J., Anestad G. Spread of subclinical Chlamydia pneumoniae infection in a closed community. Scand J Infect Dis. 1992;24(4):431–436. doi: 10.3109/00365549209052628. [DOI] [PubMed] [Google Scholar]
- Brade L., Nurminen M., Mäkelä P. H., Brade H. Antigenic properties of Chlamydia trachomatis lipopolysaccharide. Infect Immun. 1985 May;48(2):569–572. doi: 10.1128/iai.48.2.569-572.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brade L., Schramek S., Schade U., Brade H. Chemical, biological, and immunochemical properties of the Chlamydia psittaci lipopolysaccharide. Infect Immun. 1986 Nov;54(2):568–574. doi: 10.1128/iai.54.2.568-574.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cianciotto N. P., Bangsborg J. M., Eisenstein B. I., Engleberg N. C. Identification of mip-like genes in the genus Legionella. Infect Immun. 1990 Sep;58(9):2912–2918. doi: 10.1128/iai.58.9.2912-2918.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cianciotto N. P., Fields B. S. Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5188–5191. doi: 10.1073/pnas.89.11.5188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cles L. D., Stamm W. E. Use of HL cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol. 1990 May;28(5):938–940. doi: 10.1128/jcm.28.5.938-940.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Essig A., Rudolphi A., Heinemann M., Rosenthal H., Kaufmann R., Reimann J., Marre R. A model of genital Chlamydia trachomatis infection using human xenografts in severe combined immunodeficiency mice. Infect Immun. 1996 Jun;64(6):2300–2307. doi: 10.1128/iai.64.6.2300-2307.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falsey A. R., Walsh E. E. Transmission of Chlamydia pneumoniae. J Infect Dis. 1993 Aug;168(2):493–496. doi: 10.1093/infdis/168.2.493. [DOI] [PubMed] [Google Scholar]
- Fischer G., Bang H., Ludwig B., Mann K., Hacker J. Mip protein of Legionella pneumophila exhibits peptidyl-prolyl-cis/trans isomerase (PPlase) activity. Mol Microbiol. 1992 May;6(10):1375–1383. doi: 10.1111/j.1365-2958.1992.tb00858.x. [DOI] [PubMed] [Google Scholar]
- Fu Y., Baumann M., Kosma P., Brade L., Brade H. A synthetic glycoconjugate representing the genus-specific epitope of chlamydial lipopolysaccharide exhibits the same specificity as its natural counterpart. Infect Immun. 1992 Apr;60(4):1314–1321. doi: 10.1128/iai.60.4.1314-1321.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grayston J. T., Campbell L. A., Kuo C. C., Mordhorst C. H., Saikku P., Thom D. H., Wang S. P. A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis. 1990 Apr;161(4):618–625. doi: 10.1093/infdis/161.4.618. [DOI] [PubMed] [Google Scholar]
- Hacker J., Fischer G. Immunophilins: structure-function relationship and possible role in microbial pathogenicity. Mol Microbiol. 1993 Nov;10(3):445–456. doi: 10.1111/j.1365-2958.1993.tb00917.x. [DOI] [PubMed] [Google Scholar]
- Horwitz M. A., Silverstein S. C. Legionnaires' disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest. 1980 Sep;66(3):441–450. doi: 10.1172/JCI109874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundemose A. G., Birkelund S., Fey S. J., Larsen P. M., Christiansen G. Chlamydia trachomatis contains a protein similar to the Legionella pneumophila mip gene product. Mol Microbiol. 1991 Jan;5(1):109–115. doi: 10.1111/j.1365-2958.1991.tb01831.x. [DOI] [PubMed] [Google Scholar]
- Lundemose A. G., Rouch D. A., Penn C. W., Pearce J. H. The Chlamydia trachomatis Mip-like protein is a lipoprotein. J Bacteriol. 1993 Jun;175(11):3669–3671. doi: 10.1128/jb.175.11.3669-3671.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moffat J. F., Tompkins L. S. A quantitative model of intracellular growth of Legionella pneumophila in Acanthamoeba castellanii. Infect Immun. 1992 Jan;60(1):296–301. doi: 10.1128/iai.60.1.296-301.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nurminen M., Rietschel E. T., Brade H. Chemical characterization of Chlamydia trachomatis lipopolysaccharide. Infect Immun. 1985 May;48(2):573–575. doi: 10.1128/iai.48.2.573-575.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy V. M., Pepose J. S., Lubniewski A. J., Gans L. A., Smith M. E. Concurrent chlamydial and Acanthamoeba keratoconjunctivitis. Am J Ophthalmol. 1991 Oct 15;112(4):466–468. doi: 10.1016/s0002-9394(14)76265-8. [DOI] [PubMed] [Google Scholar]
- Rowbotham T. J. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol. 1980 Dec;33(12):1179–1183. doi: 10.1136/jcp.33.12.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomov A., Kassovsky V., Chorbadjiiska L., Tsvetkova E., Tsanev N., Vencheva Z. Lytic activity of Bdellovibrio bacteriovorus against bacteria of the family Legionellaceae. Zentralbl Bakteriol Mikrobiol Hyg A. 1982 May;252(1):96–100. [PubMed] [Google Scholar]
- Zähringer U., Knirel Y. A., Lindner B., Helbig J. H., Sonesson A., Marre R., Rietschel E. T. The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): chemical structure and biological significance. Prog Clin Biol Res. 1995;392:113–139. [PubMed] [Google Scholar]