Abstract
In biotin-responsive multiple carboxylase deficiency, a characteristic organic aciduria reflects in vivo deficiency of mitochondrial propionyl CoA carboxylase, 3-methylcrotonyl CoA carboxylase, and pyruvate carboxylase. A possible primary or secondary defect in biotin absorption leads to an infantile-onset syndrome, while abnormal holocarboxylase synthetase activity has been identified in the neonatal-onset form. While distinct mitochondrial and cytosolic holocarboxylase synthetase biotinylation systems may exist in avian tissues, the system has not been characterized in humans. Toward this objective, we studied the biotin dependence of a cytosolic carboxylase, acetyl CoA carboxylase (ACC), in cultured skin fibroblasts of both types of multiple carboxylase deficiency. ACC specific activities in control and infantile-onset cells were not distinguishable at all biotin concentrations: with decreasing biotin availability (+ avidin), there were only modest decrements in ACC activity in both these cell types. In contrast, there were pronounced declines of ACC activity in neonatal-onset (holocarboxylase synthetase-deficient) cells after growth in low biotin concentrations, and activity was undetectable in + avidin. ACC activity was rapidly restored with biotin repletion to biotin-starved holocarboxylase synthetase-deficient cells, and this restoration was largely independent of protein synthesis. The behavior of the cytosolic carboxylase, ACC, is in all these respects identical to that of the mitochondrial carboxylases, an observation consistent with the existence of similar biotinylation mechanisms in the two cell compartments. Further, the data support the notion that at least some components of the holocarboxylase synthetase system are shared by mitochondria and cytosol in humans, and are consistent with the suggestion that restoration of activity in biotin-depleted cells represents biotinylation of preexisting enzyme protein. The modest decrements in ACC activity in normal and infantile-onset cells may be related to the compromised epidermal integrity observed in that form of multiple carboxylase deficiency. Finally, ACC and mitochondrial carboxylase activities were compared in cells from mutants representing a spectrum of clinical severity. Cells from later-onset patients of intermediate clinical severity were ultimately classifiable as putative holocarboxylase synthetase-deficient cells on chemical criteria. Accurate etiologic classification cannot be based on clinical presentation alone, and biochemical studies should be performed on all patients. Accordingly, we propose a classification of multiple carboxylase deficiency based on biochemical criteria.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Achuta Murthy P. N., Mistry S. P., Kummerow F. A. Synthesis of acetyl coenzyme A holocarboxylase in vitro by a cytosolic preparation from chicken liver. Proc Soc Exp Biol Med. 1974 Oct;147(1):114–117. doi: 10.3181/00379727-147-38292. [DOI] [PubMed] [Google Scholar]
- Bartlett K., Gompertz D. Biotin activation of carboxylase activity in cultured fibroblasts from a child with a combined carboxylase defect. Clin Chim Acta. 1978 Mar 15;84(3):399–401. doi: 10.1016/0009-8981(78)90255-3. [DOI] [PubMed] [Google Scholar]
- Bartlett K., Gompertz D. Combined carboxylase defect: biotin-responsiveness in cultured fibroblasts. Lancet. 1976 Oct 9;2(7989):804–804. doi: 10.1016/s0140-6736(76)90640-1. [DOI] [PubMed] [Google Scholar]
- Bartlett K., Ng H., Leonard J. V. A combined defect of three mitochondrial carboxylases presenting as biotin-responsive 3-methylcrotonyl glycinuria and 3-hydroxyisovaleric aciduria. Clin Chim Acta. 1980 Jan 15;100(2):183–186. doi: 10.1016/0009-8981(80)90081-9. [DOI] [PubMed] [Google Scholar]
- Burri B. J., Sweetman L., Nyhan W. L. Mutant holocarboxylase synthetase: evidence for the enzyme defect in early infantile biotin-responsive multiple carboxylase deficiency. J Clin Invest. 1981 Dec;68(6):1491–1495. doi: 10.1172/JCI110402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies D. R., Van Schaftingen E., Hers H. G. Interference by pyruvate carboxylase in the measurement of acetyl-CoA carboxylase in crude liver preparations. Biochem J. 1982 Feb 15;202(2):559–560. doi: 10.1042/bj2020559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldman G. L., Hsia Y. E., Wolf B. Biochemical characterization of biotin-responsive multiple carboxylase deficiency: heterogeneity within the bio genetic complementation group. Am J Hum Genet. 1981 Sep;33(5):692–701. [PMC free article] [PubMed] [Google Scholar]
- Feldman G. L., Wolf B. Deficient acetyl CoA carboxylase activity in multiple carboxylase deficiency. Clin Chim Acta. 1981 Apr 9;111(2-3):147–151. doi: 10.1016/0009-8981(81)90181-9. [DOI] [PubMed] [Google Scholar]
- Freytag S. O., Utter M. F. Induction of pyruvate carboxylase apoenzyme and holoenzyme in 3T3-L1 cells during differentiation. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1321–1325. doi: 10.1073/pnas.77.3.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giorgio A. J., Plaut G. W. The effect of univalent cations on activities catalyzed by bovine-liver propionyl-CoA carboxylase. Biochim Biophys Acta. 1967 Jul 11;139(2):487–501. doi: 10.1016/0005-2744(67)90052-6. [DOI] [PubMed] [Google Scholar]
- Gompertz D., Draffan G. H. The identification of tiglylglycine in the urine of a child with -methylcrotonylglycinuria. Clin Chim Acta. 1972 Mar;37:405–410. doi: 10.1016/0009-8981(72)90462-7. [DOI] [PubMed] [Google Scholar]
- Gompertz D., Draffan G. H., Watts J. L., Hull D. Biotin-responsive beta-methylcrotonylglycinuria. Lancet. 1971 Jul 3;2(7714):22–24. doi: 10.1016/s0140-6736(71)90009-2. [DOI] [PubMed] [Google Scholar]
- Greenspan M. D., Lowenstein J. M. Effects of magnesium ions, adenosine triphosphate, palmitoylcarnitine, and palmitoyl coenzyme A on acetyl coenzyme A carboxylase. J Biol Chem. 1968 Dec 10;243(23):6273–6280. [PubMed] [Google Scholar]
- Gregolin C., Ryder E., Lane M. D. Liver acetyl coenzyme A carboxylase. I. Isolation and cat- alytic properties. J Biol Chem. 1968 Aug 25;243(16):4227–4235. [PubMed] [Google Scholar]
- Jacobs R. A., Sly W. S., Majerus P. W. The regulation of fatty acid biosynthesis in human skin fibroblasts. J Biol Chem. 1973 Feb 25;248(4):1268–1276. [PubMed] [Google Scholar]
- KOSOW D. P., HUANG S. C., LANE M. D. Propionyl holocarboxylase synthesis. I. Preparation and properties of the enzyme system. J Biol Chem. 1962 Dec;237:3633–3639. [PubMed] [Google Scholar]
- Kim K. H. Control of acetyl-CoA carboxylase by covalent modification. Mol Cell Biochem. 1979 Dec 14;28(1-3):27–43. doi: 10.1007/BF00223358. [DOI] [PubMed] [Google Scholar]
- Lynen F. New experiments of biotin enzymes. CRC Crit Rev Biochem. 1979 Dec;7(2):103–119. doi: 10.3109/10409237909105428. [DOI] [PubMed] [Google Scholar]
- MARTIN D. B., VAGELOS P. R. The mechanism of tricarboxylic acid cycle regulation of fatty acid synthesis. J Biol Chem. 1962 Jun;237:1787–1792. [PubMed] [Google Scholar]
- Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
- Mock D. M., deLorimer A. A., Liebman W. M., Sweetman L., Baker H. Biotin deficiency: an unusual complication of parenteral alimentation. N Engl J Med. 1981 Apr 2;304(14):820–823. doi: 10.1056/NEJM198104023041405. [DOI] [PubMed] [Google Scholar]
- Munnich A., Saudubray J. M., Coude F. X., Charpentier C., Saurat J. H., Frezal J. Fatty-acid-responsive alopecia in multiple carboxylase deficiency. Lancet. 1980 May 17;1(8177):1080–1081. doi: 10.1016/s0140-6736(80)91518-4. [DOI] [PubMed] [Google Scholar]
- Packman S., Caswell N. M., Baker H. Biochemical evidence for diverse etiologies in biotin-responsive multiple carboxylase deficiency. Biochem Genet. 1982 Feb;20(1-2):17–28. doi: 10.1007/BF00484932. [DOI] [PubMed] [Google Scholar]
- Packman S., Cowan M. J., Golbus M. S., Caswell N. M., Sweetman L., Burri B. J., Nyhan W. L., Baker H. Prenatal treatment of biotin responsive multiple carboxylase deficiency. Lancet. 1982 Jun 26;1(8287):1435–1438. doi: 10.1016/s0140-6736(82)92452-7. [DOI] [PubMed] [Google Scholar]
- Packman S., Sweetman L., Baker H., Wall S. The neonatal form of biotin-responsive multiple carboxylase deficiency. J Pediatr. 1981 Sep;99(3):418–420. doi: 10.1016/s0022-3476(81)80333-2. [DOI] [PubMed] [Google Scholar]
- Packman S., Sweetman L., Yoshino M., Baker H., Cowan M. Biotin-responsive multiple carboxylase deficiency of infantile onset. J Pediatr. 1981 Sep;99(3):421–423. doi: 10.1016/s0022-3476(81)80334-4. [DOI] [PubMed] [Google Scholar]
- Roth K. S., Yang W., Foremann J. W., Rothman R., Segal S. Holocarboxylase synthetase deficiency: a biotin-responsive organic acidemia. J Pediatr. 1980 May;96(5):845–849. doi: 10.1016/s0022-3476(80)80554-3. [DOI] [PubMed] [Google Scholar]
- Roth K., Cohn R., Yandrasitz J., Preti G., Dodd P., Segal S. Beta-methylcrotonic aciduria associated with lactic acidosis. J Pediatr. 1976 Feb;88(2):229–235. doi: 10.1016/s0022-3476(76)80987-0. [DOI] [PubMed] [Google Scholar]
- SIEGEL L., FOOTE J. L., COON M. J. THE ENZYMATIC SYNTHESIS OF PROPIONYL COENZYME A HOLOCARBOXYLASE FROM D-BIOTINYL 5'-ADENYLATE AND THE APOCARBOXYLASE. J Biol Chem. 1965 Mar;240:1025–1031. [PubMed] [Google Scholar]
- Saunders M. E., Sherwood W. G., Duthie M., Surh L., Gravel R. A. Evidence for a defect of holocarboxylase synthetase activity in cultured lymphoblasts from a patient with biotin-responsive multiple carboxylase deficiency. Am J Hum Genet. 1982 Jul;34(4):590–601. [PMC free article] [PubMed] [Google Scholar]
- Saunders M., Sweetman L., Robinson B., Roth K., Cohn R., Gravel R. A. Biotin-response organicaciduria. Multiple carboxylase defects and complementation studies with propionicacidemia in cultured fibroblasts. J Clin Invest. 1979 Dec;64(6):1695–1702. doi: 10.1172/JCI109632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shafrir E., Bierman E. L. Acetyl-CoA carboxylase activity in cultured human fibroblasts. Induction by insulin in relation to cell growth and triacylglycerol metabolism. Biochim Biophys Acta. 1981 Feb 23;663(2):432–445. doi: 10.1016/0005-2760(81)90172-7. [DOI] [PubMed] [Google Scholar]
- Sherwood W. G., Saunders M., Robinson B. H., Brewster T., Gravel R. A. Lactic acidosis in biotin-responsive multiple carboxylase deficiency caused by holocarboxylase synthetase deficiency of early and late onset. J Pediatr. 1982 Oct;101(4):546–550. doi: 10.1016/s0022-3476(82)80697-5. [DOI] [PubMed] [Google Scholar]
- Thoene J., Baker H., Yoshino M., Sweetman L. Biotin-responsive carboxylase deficiency associated with subnormal plasma and urinary biotin. N Engl J Med. 1981 Apr 2;304(14):817–820. doi: 10.1056/NEJM198104023041404. [DOI] [PubMed] [Google Scholar]
- Volpe J. J., Marasa J. C. Regulation of palmitic acid synthesis in cultured glial cells: effects of lipid on fatty acid synthetase, acetyl-CoA carboxylase, fatty acid and sterol synthesis. J Neurochem. 1975 Sep;25(3):333–340. doi: 10.1111/j.1471-4159.1975.tb06976.x. [DOI] [PubMed] [Google Scholar]
- Weyler W., Sweetman L., Maggio D. C., Nyhan W. L. Deficiency of propionyl-Co A carboxylase and methylcrotonyl-Co A carboxylase in a patient with methylcrotonylglycinuria. Clin Chim Acta. 1977 May 2;76(3):321–328. doi: 10.1016/0009-8981(77)90158-9. [DOI] [PubMed] [Google Scholar]
- Williams M. L., Packman S., Cowan M. J. Alopecia and periorificial dermatitis in biotin-responsive multiple carboxylase deficiency. J Am Acad Dermatol. 1983 Jul;9(1):97–103. doi: 10.1016/s0190-9622(83)70113-1. [DOI] [PubMed] [Google Scholar]
- Wolf B., Grier R. E., Parker W. D., Jr, Goodman S. I., Allen R. J. Deficient biotinidase activity in late-onset multiple carboxylase deficiency. N Engl J Med. 1983 Jan 20;308(3):161–161. doi: 10.1056/NEJM198301203080321. [DOI] [PubMed] [Google Scholar]
