Abstract
Bends in mitotic metaphase chromosomes are not distributed randomly throughout the karyotype. The frequency of bends at centromeres is positively correlated with the relative length of the chromosomes and negatively correlated with the centromere index (more bends in metacentrics, fewer in acrocentrics). The frequency of bends in the noncentromeric regions (except at Xq13-Xq21) is positively correlated with the relative length of chromosome arms. A bend at Xq13.3 to Xq21.1 was more frequent than a bend in any other region of the karyotype, centromeric or noncentromeric. It was observed in one member of the X-chromosome pair in 63% of 46,XX cells. In contrast, it was observed in only 2% of 46,XY cells. RBG-staining showed that this specific bend is confined to the lyonized X chromosome. These observations in cells from normal subjects were confirmed using G-banding and RBG-staining on cells from nine subjects with different X-chromosome abnormalities and on metaphases from amniotic fluid cell and lymphocyte cultures. The "center for Barr body condensation" has been localized to the region between Xq11.2 and Xq21.1. The functional and structural relationship is unclear, but we believe this highly specific bend may represent a visible manifestation of the condensation process; it could represent the first folded (and last unfolded) position, upon or around which the rest of the chromosome condenses. The late replication of this region may also be a factor. The smallest region of overlap (SRO) for the X-chromosome inactivation center and the specific chromosome bend is Xq13.3 to Xq21.1.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Camargo M., Cervenka J. Patterns of DNA replication of human chromosomes. II. Replication map and replication model. Am J Hum Genet. 1982 Sep;34(5):757–780. [PMC free article] [PubMed] [Google Scholar]
- Comings D. E. Arrangement of chromatin in the nucleus. Hum Genet. 1980 Feb;53(2):131–143. doi: 10.1007/BF00273484. [DOI] [PubMed] [Google Scholar]
- Liskay R. M., Evans R. J. Inactive X chromosome DNA does not function in DNA-mediated cell transformation for the hypoxanthine phosphoribosyltransferase gene. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4895–4898. doi: 10.1073/pnas.77.8.4895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattei M. G., Mattei J. F., Vidal I., Giraud F. Structural anomalies of the X chromosome and inactivation center. Hum Genet. 1981;56(3):401–408. doi: 10.1007/BF00274702. [DOI] [PubMed] [Google Scholar]
- Mohandas T., Sparkes R. S., Shapiro L. J. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science. 1981 Jan 23;211(4480):393–396. doi: 10.1126/science.6164095. [DOI] [PubMed] [Google Scholar]
- Riggs A. D. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14(1):9–25. doi: 10.1159/000130315. [DOI] [PubMed] [Google Scholar]
- Therman E., Sarto G. E., Patau K. Apparently isodicentric but functionally monocentric X chromosome in man. Am J Hum Genet. 1974 Jan;26(1):83–92. [PMC free article] [PubMed] [Google Scholar]
- Therman E., Sarto G. E., Patau K. Center for Barr body condensation on the proximal part of the human Xq: a hypothesis. Chromosoma. 1974 Jan 29;44(4):361–366. doi: 10.1007/BF00284895. [DOI] [PubMed] [Google Scholar]
- Van Dyke D. L., Miller M. J., Weiss L. The origin of inverted tandem duplications, and phenotypic effects of tandem duplication of the X chromosome long arm. Am J Med Genet. 1983 Jul;15(3):441–450. doi: 10.1002/ajmg.1320150309. [DOI] [PubMed] [Google Scholar]
- Yunis J. J., Sawyer J. R., Ball D. W. The characterization of high-resolution G-banded chromosomes of man. Chromosoma. 1978 Aug 14;67(4):293–307. doi: 10.1007/BF00285963. [DOI] [PubMed] [Google Scholar]

