Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Apr;63(4):1505–1514. doi: 10.1128/aem.63.4.1505-1514.1997

Bacterial diversity of a Carolina bay as determined by 16S rRNA gene analysis: confirmation of novel taxa.

M G Wise 1, J V McArthur 1, L J Shimkets 1
PMCID: PMC168445  PMID: 9097448

Abstract

Carolina bays are naturally occurring shallow elliptical depressions largely fed by rain and shallow ground water. To identify members of the domain Bacteria which inhibit such an environment, we used PCR to construct a library of 16S rRNA genes (16S rDNAs) cloned from DNA extracted from the sediments of Rainbow bay, located on the Savannah River Site, near Aiken, S.C. Oligonucleotides complementary to conserved regions of 16S rDNA were used as primers for PCR, and gel-purified PCR products were cloned into vector pGEM-T. Partial sequencing of the cloned 16S rDNAs revealed an extensive amount of phylogenetic diversity within this system. Of the 35 clones sequenced, 32 were affiliated with five bacterial groups: 11 clustered with the Proteobacteria division (including members of the alpha, beta, and delta subdivisions), 8 clustered with the Acidobacterium subdivision of the Fibrobacter division (as categorized by the Ribosomal Database Project's taxonomic scheme, version 5.0), 7 clustered with the Verrucomicrobium subdivision of the Planctomyces division, 3 clustered with the gram-positive bacteria (Clostridium and relatives subdivision), and 3 clustered with the green nonsulfur bacteria. One sequence branched very deeply from the Bacteria and was found not to be associated with any of the major divisions when phylogenetic trees were constructed. Two clones did not consistently cluster with specific groups and may be chimeric sequences. None of the clones exhibited an exact match to any of the 16S rDNA sequences deposited in the databases, suggesting that most of the bacteria in Rainbow Bay are novel species. In particular, the clones related to the Acidobacterium subdivision and the Verrucomicrobium subdivision confirm the presence of novel taxa discovered previously in other molecular surveys of this type.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1609–1613. doi: 10.1073/pnas.91.5.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borneman J., Skroch P. W., O'Sullivan K. M., Palus J. A., Rumjanek N. G., Jansen J. L., Nienhuis J., Triplett E. W. Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol. 1996 Jun;62(6):1935–1943. doi: 10.1128/aem.62.6.1935-1943.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Britschgi T. B., Giovannoni S. J. Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ Microbiol. 1991 Jun;57(6):1707–1713. doi: 10.1128/aem.57.6.1707-1713.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4801–4805. doi: 10.1073/pnas.75.10.4801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeLong E. F. Archaea in coastal marine environments. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685–5689. doi: 10.1073/pnas.89.12.5685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeLong E. F., Wu K. Y., Prézelin B. B., Jovine R. V. High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994 Oct 20;371(6499):695–697. doi: 10.1038/371695a0. [DOI] [PubMed] [Google Scholar]
  8. Fuerst J. A. The planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology. 1995 Jul;141(Pt 7):1493–1506. doi: 10.1099/13500872-141-7-1493. [DOI] [PubMed] [Google Scholar]
  9. Fuhrman J. A., McCallum K., Davis A. A. Novel major archaebacterial group from marine plankton. Nature. 1992 Mar 12;356(6365):148–149. doi: 10.1038/356148a0. [DOI] [PubMed] [Google Scholar]
  10. Fuhrman J. A., McCallum K., Davis A. A. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol. 1993 May;59(5):1294–1302. doi: 10.1128/aem.59.5.1294-1302.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. doi: 10.1038/345060a0. [DOI] [PubMed] [Google Scholar]
  12. Hedlund B. P., Gosink J. J., Staley J. T. Phylogeny of Prosthecobacter, the fusiform caulobacters: members of a recently discovered division of the bacteria. Int J Syst Bacteriol. 1996 Oct;46(4):960–966. doi: 10.1099/00207713-46-4-960. [DOI] [PubMed] [Google Scholar]
  13. Hillis D. M., Allard M. W., Miyamoto M. M. Analysis of DNA sequence data: phylogenetic inference. Methods Enzymol. 1993;224:456–487. doi: 10.1016/0076-6879(93)24035-s. [DOI] [PubMed] [Google Scholar]
  14. Hiraishi A., Kishimoto N., Kosako Y., Wakao N., Tano T. Phylogenetic position of the menaquinone-containing acidophilic chemo-organotroph Acidobacterium capsulatum. FEMS Microbiol Lett. 1995 Oct 1;132(1-2):91–94. doi: 10.1111/j.1574-6968.1995.tb07816.x. [DOI] [PubMed] [Google Scholar]
  15. Keis S., Bennett C. F., Ward V. K., Jones D. T. Taxonomy and phylogeny of industrial solvent-producing clostridia. Int J Syst Bacteriol. 1995 Oct;45(4):693–705. doi: 10.1099/00207713-45-4-693. [DOI] [PubMed] [Google Scholar]
  16. Kopczynski E. D., Bateson M. M., Ward D. M. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl Environ Microbiol. 1994 Feb;60(2):746–748. doi: 10.1128/aem.60.2.746-748.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee S. Y., Bollinger J., Bezdicek D., Ogram A. Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl Environ Microbiol. 1996 Oct;62(10):3787–3793. doi: 10.1128/aem.62.10.3787-3793.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liesack W., Stackebrandt E. Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol. 1992 Aug;174(15):5072–5078. doi: 10.1128/jb.174.15.5072-5078.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J., Gorby Y. A., Goodwin S. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol. 1993;159(4):336–344. doi: 10.1007/BF00290916. [DOI] [PubMed] [Google Scholar]
  20. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pechmann J. H., Scott D. E., Semlitsch R. D., Caldwell J. P., Vitt L. J., Gibbons J. W. Declining amphibian populations: the problem of separating human impacts from natural fluctuations. Science. 1991 Aug 23;253(5022):892–895. doi: 10.1126/science.253.5022.892. [DOI] [PubMed] [Google Scholar]
  22. Reysenbach A. L., Giver L. J., Wickham G. S., Pace N. R. Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol. 1992 Oct;58(10):3417–3418. doi: 10.1128/aem.58.10.3417-3418.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robison-Cox J. F., Bateson M. M., Ward D. M. Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences. Appl Environ Microbiol. 1995 Apr;61(4):1240–1245. doi: 10.1128/aem.61.4.1240-1245.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  25. Schmidt T. M., DeLong E. F., Pace N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991 Jul;173(14):4371–4378. doi: 10.1128/jb.173.14.4371-4378.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stackebrandt E., Liesack W., Goebel B. M. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J. 1993 Jan;7(1):232–236. doi: 10.1096/fasebj.7.1.8422969. [DOI] [PubMed] [Google Scholar]
  27. Staley J. T., Bont J. A., Jonge K. Prosthecobacter fusiformis nov. gen. et sp., the fusiform caulobacter. Antonie Van Leeuwenhoek. 1976;42(3):333–342. doi: 10.1007/BF00394132. [DOI] [PubMed] [Google Scholar]
  28. Torsvik V., Goksøyr J., Daae F. L. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990 Mar;56(3):782–787. doi: 10.1128/aem.56.3.782-787.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tsai Y. L., Olson B. H. Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol. 1991 Apr;57(4):1070–1074. doi: 10.1128/aem.57.4.1070-1074.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Young C. C., Burghoff R. L., Keim L. G., Minak-Bernero V., Lute J. R., Hinton S. M. Polyvinylpyrrolidone-agarose gel electrophoresis purification of polymerase chain reaction-amplifiable DNA from soils. Appl Environ Microbiol. 1993 Jun;59(6):1972–1974. doi: 10.1128/aem.59.6.1972-1974.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES