Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1985 Jul;37(4):749–760.

The presence of at least two different H-blood-group-related beta-D-gal alpha-2-L-fucosyltransferases in human serum and the genetics of blood group H substances.

J Le Pendu 1, J P Cartron 1, R U Lemieux 1, R Oriol 1
PMCID: PMC1684624  PMID: 9556663

Abstract

Sera from H normal, secretors and nonsecretors (H/-, Se/- and H/-, se/se), as well as from H-deficient secretors (h/h, Se/- or Bombay secretors) contain enzyme(s) for the transfer of L-fucose in the alpha-configuration to the 2-position of suitable beta-D-galactopyranosyl units. Sera from H-deficient nonsecretors (h/h, se/se; i.e., Bombay nonsecretors) are devoid of such beta-D-Gal alpha-2-L-fucosyltransferase(s). In order to study these enzymes, a comparison was made of the kinetic properties of the enzymes present in the sera of H-normal nonsecretors (H/-, se/se) with those of H-deficient secretors (h/h, Se/se) with those of H-deficient secretors (h/h, Se/-). These studies revealed a clear difference between the two sources of enzyme: (1) the apparent Km for GDP-fucose was four times lower with the H-normal nonsecretor serum (0.008 mM) than with the H-deficient secretor serum (0.028 mM); (2) acceptors with a type 1 or type 3 chain proved to be better than acceptors with a type 2 chain or than phenyl-beta-D-galactopyranoside for the enzyme present in the serum of H-deficient secretor individuals. Indeed, the synthetic type 2 compound, betaDGal (1-->4)-3-deoxy-beta-DGlcNAc-1-OCH3, which cannot act as an acceptor of beta DGlcNAc alpha-3/4-L-fucosyltransferases, remained unchanged in the serum of an H-deficient secretor but was a good acceptor in the serum of an H-normal nonsecretor, and (3) the alpha-2-L fucosyltransferease activity of the H-deficient secretor serum was more sensitive to heat inactivation than that of the H-normal nonsecretor serum (t1/2 at 46 degrees C were 10 min and 75 min, respectively). These results show that at least two distinct alpha-2-L-fucosyltransferases are present in human serum. It is concluded that the enzymatic activity found in the H-deficient secretor serum (h/h, Se/-) could be the product of the Se gene and the enzymatic activity found in the H-normal nonsecretor serum (H/-, se/se) could be the product of the H gene. This conclusion correlates well with the finding that H and Se genes are closely linked and might have derived by gene duplication in the course of evolution.

Full text

PDF
749

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beyer T. A., Hill R. L. Enzymatic properties of the beta-galactoside alpha 1 leads to 2 fucosyltransferase from porcine submaxillary gland. J Biol Chem. 1980 Jun 10;255(11):5373–5379. [PubMed] [Google Scholar]
  2. Cartron J. P., Badet J., Mulet C., Salmon C. Study of the alpha-N-acetylgalactosaminyltransferase in sera and red cell membranes of human A subgroups. J Immunogenet. 1978 Apr;5(2):107–116. doi: 10.1111/j.1744-313x.1978.tb00635.x. [DOI] [PubMed] [Google Scholar]
  3. Clamagirand-Mulet C., Badet J., Cartron J. P. Isoelectrofocusing pattern of 2-alpha-L, 3-alpha-L and 4-alpha-L fucosyltransferases from human milk and serum. FEBS Lett. 1981 Apr 6;126(1):123–126. doi: 10.1016/0014-5793(81)81049-6. [DOI] [PubMed] [Google Scholar]
  4. Donald A. S. A-active trisaccharides isolated from A1 and A2 blood-group-specific glycoproteins. Eur J Biochem. 1981 Nov;120(2):243–249. doi: 10.1111/j.1432-1033.1981.tb05695.x. [DOI] [PubMed] [Google Scholar]
  5. Hindsgaul O., Norberg T., Le Pendu J., Lemieux R. U. Synthesis of type 2 human blood-group antigenic determinants. The H, X, and Y haptens and variations of the H type 2 determinant as probes for the combining site of the lectin I of Ulex europaeus. Carbohydr Res. 1982 Nov 1;109:109–142. doi: 10.1016/0008-6215(82)84034-2. [DOI] [PubMed] [Google Scholar]
  6. Johnson P. H., Yates A. D., Watkins W. M. Human salivary fucosyltransferases : evidence for two distinct alpha-3-L-fucosyltransferase activities one or which is associated with the Lewis blood group Le gene. Biochem Biophys Res Commun. 1981 Jun;100(4):1611–1618. doi: 10.1016/0006-291x(81)90703-8. [DOI] [PubMed] [Google Scholar]
  7. Kumazaki T., Yoshida A. Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4193–4197. doi: 10.1073/pnas.81.13.4193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Le Pendu J., Gerard G., Vitrac D., Juszczak G., Liberge G., Rouger P., Salmon C., Lambert F., Dalix A. M., Oriol R. H-deficient blood groups of Reunion island. II. Differences between Indians (Bombay Phenotype) and whites (Reunion phenotype). Am J Hum Genet. 1983 May;35(3):484–496. [PMC free article] [PubMed] [Google Scholar]
  9. Le Pendu J., Lemieux R. U., Lambert F., Dalix A. M., Oriol R. Distribution of H type 1 and H type 2 antigenic determinants in human sera and saliva. Am J Hum Genet. 1982 May;34(3):402–415. [PMC free article] [PubMed] [Google Scholar]
  10. Le Pendu J., Oriol R., Juszczak G., Liberge G., Rouger P., Salmon C., Cartron J. P. alpha-2-L-fucosyltransferase activity in sera of individuals with H-deficient red cells and normal H antigen in secretions. Vox Sang. 1983;44(6):360–365. doi: 10.1111/j.1423-0410.1983.tb03658.x. [DOI] [PubMed] [Google Scholar]
  11. Mulet C., Cartron J. P., Badet J., Salmon C. Activity of 2-alpha-L-fucosyltransferase in human sera and red cell membranes. A study of common ABH blood donors, rare 'Bombay' and 'Parabombay' individuals. FEBS Lett. 1977 Dec 1;84(1):74–78. doi: 10.1016/0014-5793(77)81060-0. [DOI] [PubMed] [Google Scholar]
  12. Mulet C., Cartron J. P., Lopez M., Salmon Ch. ABH glycosyltransferase levels in sera and red cell membranes from Hz and Hm variant bloods. FEBS Lett. 1978 Jun 15;90(2):233–238. doi: 10.1016/0014-5793(78)80375-5. [DOI] [PubMed] [Google Scholar]
  13. Oriol R., Cartron J. P., Cartron J., Mulet C. Biosynthesis of ABH and Lewis antigens in normal and transplanted kidneys. Transplantation. 1980 Mar;29(3):184–188. doi: 10.1097/00007890-198003000-00003. [DOI] [PubMed] [Google Scholar]
  14. Oriol R., Danilovs J., Hawkins B. R. A new genetic model proposing that the Se gene is a structural gene closely linked to the H gene. Am J Hum Genet. 1981 May;33(3):421–431. [PMC free article] [PubMed] [Google Scholar]
  15. SOLOMON J. M., WAGGONER R., LEYSHON W. C. A QUANTITATIVE IMMUNOGENETIC STUDY OF GENE SUPPRESSION INVOLVING A1 AND H ANTIGENS OF THE ERYTHROCYTE WITHOUT AFFECTING SECRETED BLOOD GROUP SUBSTANCES. THE ABH PHENOTYPES AHM AND OHM. Blood. 1965 Apr;25:470–485. [PubMed] [Google Scholar]
  16. Schenkel-Brunner H., Chester M. A., Watkins W. M. Alpha-L-fucosyltransferases in human serum from donors of different ABO, secretor and Lewis blood-group phenotypes. Eur J Biochem. 1972 Oct;30(2):269–277. doi: 10.1111/j.1432-1033.1972.tb02095.x. [DOI] [PubMed] [Google Scholar]
  17. Scudder P. R., Chantler E. N. Glycosyltransferases of the human cervical epithelium. I. Characterization of a beta-galactoside alpha-2-L-fucosyltransferase and the identification of a beta-N-acetylglucosaminide alpha-3-L-fucosyltransferase. Biochim Biophys Acta. 1981 Jul 24;660(1):128–135. doi: 10.1016/0005-2744(81)90117-0. [DOI] [PubMed] [Google Scholar]
  18. Watkins W. M. Biochemistry and Genetics of the ABO, Lewis, and P blood group systems. Adv Hum Genet. 1980;10:1-136, 379-85. doi: 10.1007/978-1-4615-8288-5_1. [DOI] [PubMed] [Google Scholar]
  19. Watkins W. M. Blood group gene specified glycosyltransferases in rare ABO groups and in leukaemia. Rev Fr Transfus Immunohematol. 1978 Feb;21(1):201–228. doi: 10.1016/s0338-4535(78)80043-9. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES