Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):1689–1695. doi: 10.1128/aem.63.5.1689-1695.1997

Manipulation of independent synthesis and degradation of polyphosphate in Escherichia coli for investigation of phosphate secretion from the cell.

S J Van Dien 1, S Keyhani 1, C Yang 1, J D Keasling 1
PMCID: PMC168463  PMID: 9143103

Abstract

The genes involved in polyphosphate metabolism in Escherichia coli were cloned behind different inducible promoters on separate plasmids. The gene coding for polyphosphate kinase (PPK), the enzyme responsible for polyphosphate synthesis, was placed behind the Ptac promoter. Polyphosphatase, a polyphosphate depolymerase, was similarly expressed by using the arabinose-inducible PBAD promoter. The ability of cells containing these constructs to produce active enzymes only when induced was confirmed by polyphosphate extraction, enzyme assays, and RNA analysis. The inducer concentrations giving optimal expression of each enzyme were determined. Experiments were performed in which ppk was induced early in growth, overproducing PPK and allowing large amounts of polyphosphate to accumulate (80 mumol in phosphate monomer units per g of dry cell weight). The ppx gene was subsequently induced, and polyphosphate was degraded to inorganic phosphate. Approximately half of this polyphosphate was depleted in 210 min. The phosphate released from polyphosphate allowed the growth of phosphate-starved cells and was secreted into the medium, leading to a down-regulation of the phosphate-starvation response. In addition, the steady-state polyphosphate level was precisely controlled by manipulating the degree of ppx induction. The polyphosphate content varied from 98 to 12 mumol in phosphate monomer units per g of dry cell weight as the arabinose concentration was increased from 0 to 0.02% by weight.

Full Text

The Full Text of this article is available as a PDF (298.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn K., Kornberg A. Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J Biol Chem. 1990 Jul 15;265(20):11734–11739. [PubMed] [Google Scholar]
  2. Akiyama M., Crooke E., Kornberg A. An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. J Biol Chem. 1993 Jan 5;268(1):633–639. [PubMed] [Google Scholar]
  3. Akiyama M., Crooke E., Kornberg A. The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. J Biol Chem. 1992 Nov 5;267(31):22556–22561. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Crooke E., Akiyama M., Rao N. N., Kornberg A. Genetically altered levels of inorganic polyphosphate in Escherichia coli. J Biol Chem. 1994 Mar 4;269(9):6290–6295. [PubMed] [Google Scholar]
  6. Fidler S., Dennis D. Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol Rev. 1992 Dec;9(2-4):231–235. doi: 10.1016/0378-1097(92)90314-e. [DOI] [PubMed] [Google Scholar]
  7. Guzman L. M., Belin D., Carson M. J., Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995 Jul;177(14):4121–4130. doi: 10.1128/jb.177.14.4121-4130.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KORNBERG A., KORNBERG S. R., SIMMS E. S. Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim Biophys Acta. 1956 Apr;20(1):215–227. doi: 10.1016/0006-3002(56)90280-3. [DOI] [PubMed] [Google Scholar]
  9. KORNBERG S. R. Adenosine triphosphate synthesis from polyphosphate by an enzyme from Escherichia coli. Biochim Biophys Acta. 1957 Nov;26(2):294–300. doi: 10.1016/0006-3002(57)90008-2. [DOI] [PubMed] [Google Scholar]
  10. Kato J., Yamada K., Muramatsu A., Hardoyo, Ohtake H. Genetic improvement of Escherichia coli for enhanced biological removal of phosphate from wastewater. Appl Environ Microbiol. 1993 Nov;59(11):3744–3749. doi: 10.1128/aem.59.11.3744-3749.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kato J., Yamamoto T., Yamada K., Ohtake H. Cloning, sequence and characterization of the polyphosphate kinase-encoding gene (ppk) of Klebsiella aerogenes. Gene. 1993 Dec 31;137(2):237–242. doi: 10.1016/0378-1119(93)90013-s. [DOI] [PubMed] [Google Scholar]
  12. Keasling J. D., Hupf G. A. Genetic manipulation of polyphosphate metabolism affects cadmium tolerance in Escherichia coli. Appl Environ Microbiol. 1996 Feb;62(2):743–746. doi: 10.1128/aem.62.2.743-746.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kulaev I. S., Vagabov V. M. Polyphosphate metabolism in micro-organisms. Adv Microb Physiol. 1983;24:83–171. doi: 10.1016/s0065-2911(08)60385-9. [DOI] [PubMed] [Google Scholar]
  14. Morales V. M., Bäckman A., Bagdasarian M. A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene. 1991 Jan 2;97(1):39–47. doi: 10.1016/0378-1119(91)90007-x. [DOI] [PubMed] [Google Scholar]
  15. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Preiss J. Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol. 1984;38:419–458. doi: 10.1146/annurev.mi.38.100184.002223. [DOI] [PubMed] [Google Scholar]
  17. Schubert P., Steinbüchel A., Schlegel H. G. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol. 1988 Dec;170(12):5837–5847. doi: 10.1128/jb.170.12.5837-5847.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sharfstein S. T., Keasling J. D. Polyphosphate metabolism in Escherichia coli. Ann N Y Acad Sci. 1994 Nov 30;745:77–91. doi: 10.1111/j.1749-6632.1994.tb44365.x. [DOI] [PubMed] [Google Scholar]
  19. Slater S., Gallaher T., Dennis D. Production of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) in a recombinant Escherichia coli strain. Appl Environ Microbiol. 1992 Apr;58(4):1089–1094. doi: 10.1128/aem.58.4.1089-1094.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wood H. G., Clark J. E. Biological aspects of inorganic polyphosphates. Annu Rev Biochem. 1988;57:235–260. doi: 10.1146/annurev.bi.57.070188.001315. [DOI] [PubMed] [Google Scholar]
  21. Xavier K. B., Kossmann M., Santos H., Boos W. Kinetic analysis by in vivo 31P nuclear magnetic resonance of internal Pi during the uptake of sn-glycerol-3-phosphate by the pho regulon-dependent Ugp system and the glp regulon-dependent GlpT system. J Bacteriol. 1995 Feb;177(3):699–704. doi: 10.1128/jb.177.3.699-704.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. van Groenestijn J. W., Vlekke G. J., Anink D. M., Deinema M. H., Zehnder A. J. Role of Cations in Accumulation and Release of Phosphate by Acinetobacter Strain 210A. Appl Environ Microbiol. 1988 Dec;54(12):2894–2901. doi: 10.1128/aem.54.12.2894-2901.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Veen H. W., Abee T., Kortstee G. J., Konings W. N., Zehnder A. J. Mechanism and energetics of the secondary phosphate transport system of Acinetobacter johnsonii 210A. J Biol Chem. 1993 Sep 15;268(26):19377–19383. [PubMed] [Google Scholar]
  24. van Veen H. W., Abee T., Kortstee G. J., Konings W. N., Zehnder A. J. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry. 1994 Feb 22;33(7):1766–1770. doi: 10.1021/bi00173a020. [DOI] [PubMed] [Google Scholar]
  25. van Veen H. W., Abee T., Kortstee G. J., Pereira H., Konings W. N., Zehnder A. J. Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A. J Biol Chem. 1994 Nov 25;269(47):29509–29514. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES