Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):1715–1720. doi: 10.1128/aem.63.5.1715-1720.1997

Purification and properties of methyl formate synthase, a mitochondrial alcohol dehydrogenase, participating in formaldehyde oxidation in methylotrophic yeasts.

A P Murdanoto 1, Y Sakai 1, T Konishi 1, F Yasuda 1, Y Tani 1, N Kato 1
PMCID: PMC168467  PMID: 9143107

Abstract

Methyl formate synthase, which catalyzes methyl formate formation during the growth of methylotrophic yeasts, was purified to homogeneity from methanol-grown Candida boidinii and Pichia methanolica cells. Both purified enzymes were tetrameric, with identical subunits with molecular masses of 42 to 45 kDa, containing two atoms of zinc per subunit. The enzymes catalyze NAD(+)-linked dehydrogenation of the hydroxyl group of the hemiacetal adduct [CH2(OH)OCH3] of methanol and formaldehyde, leading to the formation of a stoichiometric amount of methyl formate. Although neither methanol nor formaldehyde alone acted as a substrate for the enzymes, they showed simple NAD(+)-linked alcohol dehydrogenase activity toward aliphatic long-chain alcohols such as octanol, showing that they belong to the class III alcohol dehydrogenase family. The methyl formate synthase activity of C. boidinii was found in the mitochondrial fraction in subcellular fractionation experiments, suggesting that methyl formate synthase is a homolog of Saccharomyces cerevisiae Adh3p. These results indicate that formaldehyde could be oxidized in a glutathione-independent manner by methyl formate synthase in methylotrophic yeasts. The significance of methyl formate synthase in both formaldehyde resistance and energy metabolism is also discussed.

Full Text

The Full Text of this article is available as a PDF (307.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERGMEYER H. U. Zur Messung von Katalase-Aktivitäten. Biochem Z. 1955;327(4):255–258. [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Chanet R., von Borstel R. C. Genetic effects of formaldehyde in yeast. III. Nuclear and cytoplasmic mutagenic effects. Mutat Res. 1979 Sep;62(2):239–253. doi: 10.1016/0027-5107(79)90082-4. [DOI] [PubMed] [Google Scholar]
  4. Cregg J. M., Vedvick T. S., Raschke W. C. Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (N Y) 1993 Aug;11(8):905–910. doi: 10.1038/nbt0893-905. [DOI] [PubMed] [Google Scholar]
  5. Eggeling L., Sahm H. The formaldehyde dehydrogenase of Rhodococcus erythropolis, a trimeric enzyme requiring a cofactor and active with alcohols. Eur J Biochem. 1985 Jul 1;150(1):129–134. doi: 10.1111/j.1432-1033.1985.tb08997.x. [DOI] [PubMed] [Google Scholar]
  6. Gellissen G., Janowicz Z. A., Merckelbach A., Piontek M., Keup P., Weydemann U., Hollenberg C. P., Strasser A. W. Heterologous gene expression in Hansenula polymorpha: efficient secretion of glucoamylase. Biotechnology (N Y) 1991 Mar;9(3):291–295. doi: 10.1038/nbt0391-291. [DOI] [PubMed] [Google Scholar]
  7. Goodman J. M. Dihydroxyacetone synthase is an abundant constituent of the methanol-induced peroxisome of Candida boidinii. J Biol Chem. 1985 Jun 10;260(11):7108–7113. [PubMed] [Google Scholar]
  8. Goodman J. M., Scott C. W., Donahue P. N., Atherton J. P. Alcohol oxidase assembles post-translationally into the peroxisome of Candida boidinii. J Biol Chem. 1984 Jul 10;259(13):8485–8493. [PubMed] [Google Scholar]
  9. Gömpel-Klein P., Mack M., Brendel M. Molecular characterization of the two genes SNQ and SFA that confer hyperresistance to 4-nitroquinoline-N-oxide and formaldehyde in Saccharomyces cerevisiae. Curr Genet. 1989 Aug;16(2):65–74. doi: 10.1007/BF00393397. [DOI] [PubMed] [Google Scholar]
  10. Ito K., Takahashi M., Yoshimoto T., Tsuru D. Cloning and high-level expression of the glutathione-independent formaldehyde dehydrogenase gene from Pseudomonas putida. J Bacteriol. 1994 May;176(9):2483–2491. doi: 10.1128/jb.176.9.2483-2491.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kato N., Higuchi T., Sakazawa C., Nishizawa T., Tani Y., Yamada H. Purification and properties of a transketolase responsible for formaldehyde fixation in a methanol-utilizing yeast, candida boidinii (Kloeckera sp.) No. 2201. Biochim Biophys Acta. 1982 Apr 13;715(2):143–150. [PubMed] [Google Scholar]
  12. Kato N., Omori Y., Tani Y., Ogata K. Alcohol oxidases of Kloeckera sp. and Hansenula polymorpha. Catalytic properties and subunit structures. Eur J Biochem. 1976 May 1;64(2):341–350. doi: 10.1111/j.1432-1033.1976.tb10307.x. [DOI] [PubMed] [Google Scholar]
  13. Kato N., Sahm H., Wagner F. Steady-state kinetics of formaldehyde dehydrogenase and formate dehydrogenase from a methanol-utilizing yeast, Candida boidinii. Biochim Biophys Acta. 1979 Jan 12;566(1):12–20. doi: 10.1016/0005-2744(79)90243-2. [DOI] [PubMed] [Google Scholar]
  14. Kato N., Sakazawa C., Nishizawa T., Tani Y., Yamada H. Purificaton and characterization of S-formylglutathione hydrolase from a methanol-utilizing yeast, Kloeckera sp. No. 2201. Biochim Biophys Acta. 1980 Feb 14;611(2):323–332. doi: 10.1016/0005-2744(80)90068-6. [DOI] [PubMed] [Google Scholar]
  15. Koivusalo M., Baumann M., Uotila L. Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase. FEBS Lett. 1989 Oct 23;257(1):105–109. doi: 10.1016/0014-5793(89)81797-1. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sakai Y., Akiyama M., Kondoh H., Shibano Y., Kato N. High-level secretion of fungal glucoamylase using the Candida boidinii gene expression system. Biochim Biophys Acta. 1996 Jul 31;1308(1):81–87. doi: 10.1016/0167-4781(96)00075-9. [DOI] [PubMed] [Google Scholar]
  19. Sakai Y., Murdanoto A. P., Sembiring L., Tani Y., Kato N. A novel formaldehyde oxidation pathway in methylotrophic yeasts: methylformate as a possible intermediate. FEMS Microbiol Lett. 1995 Apr 1;127(3):229–234. doi: 10.1111/j.1574-6968.1995.tb07478.x. [DOI] [PubMed] [Google Scholar]
  20. Sakai Y., Rogi T., Takeuchi R., Kato N., Tani Y. Expression of Saccharomyces adenylate kinase gene in Candida boidinii under the regulation of its alcohol oxidase promoter. Appl Microbiol Biotechnol. 1995 Mar;42(6):860–864. doi: 10.1007/BF00191182. [DOI] [PubMed] [Google Scholar]
  21. Sakai Y., Saiganji A., Yurimoto H., Takabe K., Saiki H., Kato N. The absence of Pmp47, a putative yeast peroxisomal transporter, causes a defect in transport and folding of a specific matrix enzyme. J Cell Biol. 1996 Jul;134(1):37–51. doi: 10.1083/jcb.134.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schüte H., Flossdorf J., Sahm H., Kula M. R. Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. Eur J Biochem. 1976 Feb 2;62(1):151–160. doi: 10.1111/j.1432-1033.1976.tb10108.x. [DOI] [PubMed] [Google Scholar]
  23. Shah H. C., Carlson G. P. Alteration by phenobarbital and 3-methyl-cholanthrene of functional and structural changes in rat liver due to carbon tetrachloride inhalation. J Pharmacol Exp Ther. 1975 Apr;193(1):281–292. [PubMed] [Google Scholar]
  24. Tolbert N. E. Isolation of subcellular organelles of metabolism on isopycnic sucrose gradients. Methods Enzymol. 1974;31:734–746. doi: 10.1016/0076-6879(74)31077-4. [DOI] [PubMed] [Google Scholar]
  25. Van Ophem P. W., Bystrykh L. V., Duine J. A. Dye-linked dehydrogenase activities for formate and formate esters in Amycolatopsis methanolica. Characterization of a molybdoprotein enzyme active with formate esters and aldehydes. Eur J Biochem. 1992 Jun 1;206(2):519–525. doi: 10.1111/j.1432-1033.1992.tb16955.x. [DOI] [PubMed] [Google Scholar]
  26. Veenhuis M., Goodman J. M. Peroxisomal assembly: membrane proliferation precedes the induction of the abundant matrix proteins in the methylotrophic yeast Candida boidinii. J Cell Sci. 1990 Aug;96(Pt 4):583–590. doi: 10.1242/jcs.96.4.583. [DOI] [PubMed] [Google Scholar]
  27. van Iersel J., Jzn J. F., Duine J. A. Determination of absorption coefficients of purified proteins by conventional ultraviolet spectrophotometry and chromatography combined with multiwavelength detection. Anal Biochem. 1985 Nov 15;151(1):196–204. doi: 10.1016/0003-2697(85)90072-7. [DOI] [PubMed] [Google Scholar]
  28. van Ophem P. W., Van Beeumen J., Duine J. A. NAD-linked, factor-dependent formaldehyde dehydrogenase or trimeric, zinc-containing, long-chain alcohol dehydrogenase from Amycolatopsis methanolica. Eur J Biochem. 1992 Jun 1;206(2):511–518. doi: 10.1111/j.1432-1033.1992.tb16954.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES