Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):1843–1846. doi: 10.1128/aem.63.5.1843-1846.1997

Clustering of trichothecene-producing Fusarium strains determined from 28S ribosomal DNA sequences.

G Mulè 1, A Logrieco 1, G Stea 1, A Bottalico 1
PMCID: PMC168476  PMID: 9143116

Abstract

The genus Fusarium includes several species that produce trichothecenes. We analyzed DNA sequences from a variable region at the 5' end of the large nuclear ribosomal DNA (rDNA) (28S) to determine the genetic relatedness of trichothecene-producing Fusarium species. All trichothecene-producing strains clustered together, and two monophyletic groups were resolved. The first clade included strains of F. acuminatum, F. sambucinum, F. tumidum, F. compactum, F. camptoceras (red pigment), F. sporotrichioides, and F. venenatum, which produced type A trichothecenes (T-2 toxin, HT-2 toxin, neosolaniol, and diacetoxyscirpenol). The second clade consisted of strains of F. crookwellense, F. culmorum, and F. graminearum, which produced type B trichothecenes (fusarenone-X, nivalenol, and deoxynivalenol). The phylogenetic placement of the species based on rDNA correlated better with toxic secondary metabolite data rather than with the current classification system based on morphology.

Full Text

The Full Text of this article is available as a PDF (224.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altomare C., Logrieco A., Bottalico A., Mulé G., Moretti A., Evidente A. Production of type A trichothecenes and enniatin B by Fusarium sambucinum Fuckel sensu lato. Mycopathologia. 1995;129(3):177–181. doi: 10.1007/BF01103344. [DOI] [PubMed] [Google Scholar]
  2. Altomare C., Ritieni A., Perrone G., Fogliano V., Mannina L., Logrieco A. Production of neosolaniol by Fusarium tumidum. Mycopathologia. 1995 Jun;130(3):179–184. doi: 10.1007/BF01103102. [DOI] [PubMed] [Google Scholar]
  3. Baroin A., Perasso R., Qu L. H., Brugerolle G., Bachellerie J. P., Adoutte A. Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. Proc Natl Acad Sci U S A. 1988 May;85(10):3474–3478. doi: 10.1073/pnas.85.10.3474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark C. G., Tague B. W., Ware V. C., Gerbi S. A. Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications. Nucleic Acids Res. 1984 Aug 10;12(15):6197–6220. doi: 10.1093/nar/12.15.6197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Golinski P., Vesonder R. F., Latus-Zietkiewicz D., Perkowski J. Formation of fusarenone X, nivalenol, zearalenone, alpha-trans-zearalenol, beta-trans-zearalenol, and fusarin C by Fusarium crookwellense. Appl Environ Microbiol. 1988 Aug;54(8):2147–2148. doi: 10.1128/aem.54.8.2147-2148.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hassouna N., Michot B., Bachellerie J. P. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res. 1984 Apr 25;12(8):3563–3583. doi: 10.1093/nar/12.8.3563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Saccone C., Lanave C., Pesole G., Preparata G. Influence of base composition on quantitative estimates of gene evolution. Methods Enzymol. 1990;183:570–583. doi: 10.1016/0076-6879(90)83037-a. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES