Abstract
Sphingomonas chlorophenolica RA-2 is a soil microorganism that can grow on pentachlorophenol (PCP) as a sole carbon source. In this microorganism, PCP is converted to tetrachlorohydroquinone (TCHQ), trichlorohydroquinone, and 2,6-dichlorohydroquinone. The remainder of the pathway has not yet been defined. The ability to grow on PCP as a sole carbon source is remarkable because of the toxicity of PCP and its chlorinated hydroquinone metabolites. Experiments in which the levels of PCP and chlorinated hydroquinones were measured in cells metabolizing [U-14C]PCP revealed that the levels of chlorinated hydroquinones in the cytoplasm are in the low micromolar range. The toxicity of chlorinated hydroquinones was evaluated by exposure of Escherichia coli cells that had been treated with EDTA (to remove the outer membrane) to TCHQ. Significant toxicity due to TCHQ was not apparent until concentrations of 500 microM and higher. Thus, an important part of the explanation for why S. chlorophenolica RA-2 is able to grow on PCP as a sole carbon source is undoubtedly that it can process sufficient carbon for growth without accumulating high levels of toxic intermediates.
Full Text
The Full Text of this article is available as a PDF (438.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apajalahti J. H., Salkinoja-Salonen M. S. Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J Bacteriol. 1987 Nov;169(11):5125–5130. doi: 10.1128/jb.169.11.5125-5130.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahlhaus M., Almstadt E., Henschke P., Lüttgert S., Appel K. E. Induction of 8-hydroxy-2-deoxyguanosine and single-strand breaks in DNA of V79 cells by tetrachloro-p-hydroquinone. Mutat Res. 1995 Jun;329(1):29–36. doi: 10.1016/0027-5107(95)00014-a. [DOI] [PubMed] [Google Scholar]
- Ederer M. M., Crawford R. L., Herwig R. P., Orser C. S. PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol Ecol. 1997 Jan;6(1):39–49. doi: 10.1046/j.1365-294x.1997.00151.x. [DOI] [PubMed] [Google Scholar]
- Ehrlich W. The effect of pentachlorophenol and its metabolite tetrachlorohydroquinone on cell growth and the induction of DNA damage in Chinese hamster ovary cells. Mutat Res. 1990 Aug;244(4):299–302. doi: 10.1016/0165-7992(90)90076-v. [DOI] [PubMed] [Google Scholar]
- Hattemer-Frey H. A., Travis C. C. Pentachlorophenol: environmental partitioning and human exposure. Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):482–489. doi: 10.1007/BF01055013. [DOI] [PubMed] [Google Scholar]
- Häggblom M. M., Janke D., Salkinoja-Salonen M. S. Hydroxylation and Dechlorination of Tetrachlorohydroquinone by Rhodococcus sp. Strain CP-2 Cell Extracts. Appl Environ Microbiol. 1989 Feb;55(2):516–519. doi: 10.1128/aem.55.2.516-519.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häggblom M. M., Nohynek L. J., Salkinoja-Salonen M. S. Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl Environ Microbiol. 1988 Dec;54(12):3043–3052. doi: 10.1128/aem.54.12.3043-3052.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito M., Ohnishi Y. Escherichia coli mutants resistant to uncouplers of oxidative phosphorylation. Microbiol Immunol. 1982;26(11):1079–1084. doi: 10.1111/j.1348-0421.1982.tb00256.x. [DOI] [PubMed] [Google Scholar]
- Juhl U., Blum J. K., Butte W., Witte I. The induction of DNA strand breaks and formation of semiquinone radicals by metabolites of 2,4,5-trichlorophenol. Free Radic Res Commun. 1991;11(6):295–305. doi: 10.3109/10715769109088927. [DOI] [PubMed] [Google Scholar]
- Kappus H., Sies H. Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia. 1981 Dec 15;37(12):1233–1241. doi: 10.1007/BF01948335. [DOI] [PubMed] [Google Scholar]
- Kolachana P., Subrahmanyam V. V., Meyer K. B., Zhang L., Smith M. T. Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo. Cancer Res. 1993 Mar 1;53(5):1023–1026. [PubMed] [Google Scholar]
- Leive L. Studies on the permeability change produced in coliform bacteria by ethylenediaminetetraacetate. J Biol Chem. 1968 May 10;243(9):2373–2380. [PubMed] [Google Scholar]
- McCarthy D. L., Navarrete S., Willett W. S., Babbitt P. C., Copley S. D. Exploration of the relationship between tetrachlorohydroquinone dehalogenase and the glutathione S-transferase superfamily. Biochemistry. 1996 Nov 19;35(46):14634–14642. doi: 10.1021/bi961730f. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
- Newton G. L., Fahey R. C., Cohen G., Aharonowitz Y. Low-molecular-weight thiols in streptomycetes and their potential role as antioxidants. J Bacteriol. 1993 May;175(9):2734–2742. doi: 10.1128/jb.175.9.2734-2742.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orser C. S., Dutton J., Lange C., Jablonski P., Xun L., Hargis M. Characterization of a Flavobacterium glutathione S-transferase gene involved reductive dechlorination. J Bacteriol. 1993 May;175(9):2640–2644. doi: 10.1128/jb.175.9.2640-2644.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ploemen J. H., van Ommen B., van Bladeren P. J. Irreversible inhibition of human glutathione S-transferase isoenzymes by tetrachloro-1,4-benzoquinone and its glutathione conjugate. Biochem Pharmacol. 1991 Jun 1;41(11):1665–1669. doi: 10.1016/0006-2952(91)90167-4. [DOI] [PubMed] [Google Scholar]
- Radehaus P. M., Schmidt S. K. Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Appl Environ Microbiol. 1992 Sep;58(9):2879–2885. doi: 10.1128/aem.58.9.2879-2885.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smejtek P., Barstad A. W., Wang S. Pentachlorophenol-induced change of zeta-potential and gel-to-fluid transition temperature in model lecithin membranes. Chem Biol Interact. 1989;71(1):37–61. doi: 10.1016/0009-2797(89)90089-6. [DOI] [PubMed] [Google Scholar]
- Stockdale M., Selwyn M. J. Effects of ring substituents on the activity of phenols as inhibitors and uncouplers of mitochondrial respiration. Eur J Biochem. 1971 Aug 25;21(4):565–574. doi: 10.1111/j.1432-1033.1971.tb01502.x. [DOI] [PubMed] [Google Scholar]
- Suwalsky M., Espinoza M. A., Bagnara M., Sotomayor C. P. X-ray and fluorescence studies on phospholipid bilayers. IX. Interactions with pentachlorophenol. Z Naturforsch C. 1990 Mar-Apr;45(3-4):265–272. doi: 10.1515/znc-1990-3-421. [DOI] [PubMed] [Google Scholar]
- Taylor M. F., Boylan M. H., Edmondson D. E. Azotobacter vinelandii flavodoxin: purification and properties of the recombinant, dephospho form expressed in Escherichia coli. Biochemistry. 1990 Jul 24;29(29):6911–6918. doi: 10.1021/bi00481a022. [DOI] [PubMed] [Google Scholar]
- Ting H. P., Wilson D. F., Chance B. Effects of uncouplers of oxidative phosphorylation on the specific conductance of bimolecular lipid membranes. Arch Biochem Biophys. 1970 Nov;141(1):141–146. doi: 10.1016/0003-9861(70)90116-5. [DOI] [PubMed] [Google Scholar]
- Uotila J. S., Salkinoja-Salonen M. S., Apajalahti J. H. Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-I. Biodegradation. 1991;2(1):25–31. doi: 10.1007/BF00122422. [DOI] [PubMed] [Google Scholar]
- Witte I., Juhl U., Butte W. DNA-damaging properties and cytotoxicity in human fibroblasts of tetrachlorohydroquinone, a pentachlorophenol metabolite. Mutat Res. 1985 Jan-Mar;145(1-2):71–75. doi: 10.1016/0167-8817(85)90042-2. [DOI] [PubMed] [Google Scholar]
- Xun L., Orser C. S. Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J Bacteriol. 1991 Jul;173(14):4447–4453. doi: 10.1128/jb.173.14.4447-4453.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xun L., Topp E., Orser C. S. Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. J Bacteriol. 1992 May;174(9):2898–2902. doi: 10.1128/jb.174.9.2898-2902.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xun L., Topp E., Orser C. S. Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J Bacteriol. 1992 Dec;174(24):8003–8007. doi: 10.1128/jb.174.24.8003-8007.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Ommen B., Adang A., Müller F., van Bladeren P. J. The microsomal metabolism of pentachlorophenol and its covalent binding to protein and DNA. Chem Biol Interact. 1986 Oct 15;60(1):1–11. doi: 10.1016/0009-2797(86)90013-x. [DOI] [PubMed] [Google Scholar]
- van Ommen B., Koster A., Verhagen H., van Bladeren P. J. The glutathione conjugates of tert-butyl hydroquinone as potent redox cycling agents and possible reactive agents underlying the toxicity of butylated hydroxyanisole. Biochem Biophys Res Commun. 1992 Nov 30;189(1):309–314. doi: 10.1016/0006-291x(92)91559-9. [DOI] [PubMed] [Google Scholar]