Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):1917–1924. doi: 10.1128/aem.63.5.1917-1924.1997

Combining the hok/sok, parDE, and pnd postsegregational killer loci to enhance plasmid stability.

D C Pecota 1, C S Kim 1, K Wu 1, K Gerdes 1, T K Wood 1
PMCID: PMC168483  PMID: 9143123

Abstract

To enhance plasmid segregational stability in bacterial cells, two pairs of independent postsegregational killing loci (genes which induce host killing upon plasmid loss) isolated from plasmids R1, R483, or RP4 (hok+/sok+ pnd+ or hok+/sok+ parDE+) were cloned into a common site of the beta-galactosidase expression vector pMJR1750 (ptac::lacZ+) to form a series of plasmids in which the effect of one or two stability loci on segregational plasmid stability could be discerned. Adding two antisense killer loci (hok+/sok+ pnd+) decreased the specific growth rate by 50% though they were more effective at reducing segregational instability than hok+/sok+ alone. With the ptac promoter induced fully (2.0 mM isopropyl-beta-D-thiogalactopyranoside) and no antibiotic selection pressure, the combination of a proteic killer locus (parDE+) with antisense killer loci (hok+/sok+) had a negligible impact on specific growth rate, maintained high beta-galactosidase expression, and led to a 30 and 190% increase in segregational stability (based on stable generations) as compared to plasmids containing either hok+/sok+ or parDE+ alone, respectively. Use of hok+/sok+ or parDE+ alone with high cloned-gene expression led to ninefold and fourfold increases in the number of stable generations, respectively. Two convenient cloning cassettes have been constructed to facilitate cloning the dual hok+/sok+ parDE+ and hok+/sok+ pnd+ killer systems.

Full Text

The Full Text of this article is available as a PDF (455.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernard P. Positive selection of recombinant DNA by CcdB. Biotechniques. 1996 Aug;21(2):320–323. doi: 10.2144/96212pf01. [DOI] [PubMed] [Google Scholar]
  2. Burkardt H. J., Riess G., Pühler A. Relationship of group P1 plasmids revealed by heteroduplex experiments: RP1, RP4, R68 and RK2 are identical. J Gen Microbiol. 1979 Oct;114(2):341–348. doi: 10.1099/00221287-114-2-341. [DOI] [PubMed] [Google Scholar]
  3. Donovan R. S., Robinson C. W., Glick B. R. Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J Ind Microbiol. 1996 Mar;16(3):145–154. doi: 10.1007/BF01569997. [DOI] [PubMed] [Google Scholar]
  4. Gerdes K., Poulsen L. K., Thisted T., Nielsen A. K., Martinussen J., Andreasen P. H. The hok killer gene family in gram-negative bacteria. New Biol. 1990 Nov;2(11):946–956. [PubMed] [Google Scholar]
  5. Gerdes K., Rasmussen P. B., Molin S. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci U S A. 1986 May;83(10):3116–3120. doi: 10.1073/pnas.83.10.3116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Herrero M., de Lorenzo V., Timmis K. N. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol. 1990 Nov;172(11):6557–6567. doi: 10.1128/jb.172.11.6557-6567.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Imanaka T., Aiba S. A perspective on the application of genetic engineering: stability of recombinant plasmid. Ann N Y Acad Sci. 1981;369:1–14. doi: 10.1111/j.1749-6632.1981.tb14172.x. [DOI] [PubMed] [Google Scholar]
  8. Jensen L. B., Ramos J. L., Kaneva Z., Molin S. A substrate-dependent biological containment system for Pseudomonas putida based on the Escherichia coli gef gene. Appl Environ Microbiol. 1993 Nov;59(11):3713–3717. doi: 10.1128/aem.59.11.3713-3717.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jensen R. B., Gerdes K. Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol Microbiol. 1995 Jul;17(2):205–210. doi: 10.1111/j.1365-2958.1995.mmi_17020205.x. [DOI] [PubMed] [Google Scholar]
  10. Jensen R. B., Grohmann E., Schwab H., Díaz-Orejas R., Gerdes K. Comparison of ccd of F, parDE of RP4, and parD of R1 using a novel conditional replication control system of plasmid R1. Mol Microbiol. 1995 Jul;17(2):211–220. doi: 10.1111/j.1365-2958.1995.mmi_17020211.x. [DOI] [PubMed] [Google Scholar]
  11. Johnson E. P., Strom A. R., Helinski D. R. Plasmid RK2 toxin protein ParE: purification and interaction with the ParD antitoxin protein. J Bacteriol. 1996 Mar;178(5):1420–1429. doi: 10.1128/jb.178.5.1420-1429.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knudsen S. M., Karlström O. H. Development of efficient suicide mechanisms for biological containment of bacteria. Appl Environ Microbiol. 1991 Jan;57(1):85–92. doi: 10.1128/aem.57.1.85-92.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Masuda Y., Miyakawa K., Nishimura Y., Ohtsubo E. chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100. J Bacteriol. 1993 Nov;175(21):6850–6856. doi: 10.1128/jb.175.21.6850-6856.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nielsen A. K., Thorsted P., Thisted T., Wagner E. G., Gerdes K. The rifampicin-inducible genes srnB from F and pnd from R483 are regulated by antisense RNAs and mediate plasmid maintenance by killing of plasmid-free segregants. Mol Microbiol. 1991 Aug;5(8):1961–1973. doi: 10.1111/j.1365-2958.1991.tb00818.x. [DOI] [PubMed] [Google Scholar]
  15. Porter R. D., Black S., Pannuri S., Carlson A. Use of the Escherichia coli SSB gene to prevent bioreactor takeover by plasmidless cells. Biotechnology (N Y) 1990 Jan;8(1):47–51. doi: 10.1038/nbt0190-47. [DOI] [PubMed] [Google Scholar]
  16. Smith A. W., Iglewski B. H. Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res. 1989 Dec 25;17(24):10509–10509. doi: 10.1093/nar/17.24.10509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sobecky P. A., Easter C. L., Bear P. D., Helinski D. R. Characterization of the stable maintenance properties of the par region of broad-host-range plasmid RK2. J Bacteriol. 1996 Apr;178(7):2086–2093. doi: 10.1128/jb.178.7.2086-2093.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stark M. J. Multicopy expression vectors carrying the lac repressor gene for regulated high-level expression of genes in Escherichia coli. Gene. 1987;51(2-3):255–267. doi: 10.1016/0378-1119(87)90314-3. [DOI] [PubMed] [Google Scholar]
  19. Thisted T., Sørensen N. S., Gerdes K. Mechanism of post-segregational killing: secondary structure analysis of the entire Hok mRNA from plasmid R1 suggests a fold-back structure that prevents translation and antisense RNA binding. J Mol Biol. 1995 Apr 14;247(5):859–873. doi: 10.1006/jmbi.1995.0186. [DOI] [PubMed] [Google Scholar]
  20. Wu K., Jahng D., Wood T. K. Temperature and growth rate effects on the hok/sok killer locus for enhanced plasmid stability. Biotechnol Prog. 1994 Nov-Dec;10(6):621–629. doi: 10.1021/bp00030a600. [DOI] [PubMed] [Google Scholar]
  21. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES