Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):1933–1938. doi: 10.1128/aem.63.5.1933-1938.1997

Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B.

E S Gilbert 1, D E Crowley 1
PMCID: PMC168484  PMID: 9143124

Abstract

Plant compounds that induced Arthrobacter sp. strain B1B to cometabolize polychlorinated biphenyls (PCBs) were identified by a screening assay based on the formation of a 4,4'-dichlorobiphenyl ring fission product. A chemical component of spearmint (Mentha spicata), l-carvone, induced Arthrobacter sp. strain B1B to cometabolize Aroclor 1242, resulting in significant degradation of 26 peaks in the mixture, including selected tetra- and pentachlorobiphenyls. Evidence for PCB biodegradation included peak disappearance, formation of a phenylhexdienoate ring fission product, and chlorobenzoate accumulation in the culture supernatant. Carvone was not utilized as a growth substrate and was toxic at concentrations of greater than 500 mg liter-1. Several compounds structurally related to l-carvone, including limonene, p-cymene, and isoprene, also induced cometabolism of PCBs by Arthrobacter sp. strain B1B. A structure-activity analysis showed that chemicals with an unsaturated p-menthane structural motif promoted the strongest cometabolism activity. These data suggest that certain plant-derived terpenoids may be useful for promoting enhanced rates of PCB biodegradation by soil bacteria.

Full Text

The Full Text of this article is available as a PDF (276.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad D., Massé R., Sylvestre M. Cloning and expression of genes involved in 4-chlorobiphenyl transformation by Pseudomonas testosteroni: homology to polychlorobiphenyl-degrading genes in other bacteria. Gene. 1990 Jan 31;86(1):53–61. doi: 10.1016/0378-1119(90)90113-6. [DOI] [PubMed] [Google Scholar]
  2. Bedard D. L., Wagner R. E., Brennan M. J., Haberl M. L., Brown J. F., Jr Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl Environ Microbiol. 1987 May;53(5):1094–1102. doi: 10.1128/aem.53.5.1094-1102.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brazil G. M., Kenefick L., Callanan M., Haro A., de Lorenzo V., Dowling D. N., O'Gara F. Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol. 1995 May;61(5):1946–1952. doi: 10.1128/aem.61.5.1946-1952.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Catelani D., Colombi A. Metabolism of biphenyl. Structure and physicochemical properties of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid, the meta-cleavage product from 2,3-dihydroxybiphenyl by Pseudomonas putida. Biochem J. 1974 Nov;143(2):431–434. doi: 10.1042/bj1430431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dabrock B., Kesseler M., Averhoff B., Gottschalk G. Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethene catabolism. Appl Environ Microbiol. 1994 Mar;60(3):853–860. doi: 10.1128/aem.60.3.853-860.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Furukawa K., Matsumura F. Microbial metabolism of polychlorinated biphenyls. Studies on the relative degradability of polychlorinated biphenyl components by Alkaligenes sp. J Agric Food Chem. 1976 Mar-Apr;24(2):251–256. doi: 10.1021/jf60204a002. [DOI] [PubMed] [Google Scholar]
  7. Furukawa K., Miyazaki T. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol. 1986 May;166(2):392–398. doi: 10.1128/jb.166.2.392-398.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Furukawa K. Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation. 1994 Dec;5(3-4):289–300. doi: 10.1007/BF00696466. [DOI] [PubMed] [Google Scholar]
  9. Higson F. K. Microbial degradation of biphenyl and its derivatives. Adv Appl Microbiol. 1992;37:135–164. doi: 10.1016/s0065-2164(08)70254-5. [DOI] [PubMed] [Google Scholar]
  10. Kohler H. P., Kohler-Staub D., Focht D. D. Cometabolism of polychlorinated biphenyls: enhanced transformation of Aroclor 1254 by growing bacterial cells. Appl Environ Microbiol. 1988 Aug;54(8):1940–1945. doi: 10.1128/aem.54.8.1940-1945.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lajoie C. A., Layton A. C., Sayler G. S. Cometabolic oxidation of polychlorinated biphenyls in soil with a surfactant-based field application vector. Appl Environ Microbiol. 1994 Aug;60(8):2826–2833. doi: 10.1128/aem.60.8.2826-2833.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lucchini J. J., Corre J., Cremieux A. Antibacterial activity of phenolic compounds and aromatic alcohols. Res Microbiol. 1990 May;141(4):499–510. doi: 10.1016/0923-2508(90)90075-2. [DOI] [PubMed] [Google Scholar]
  13. MUNKRES K. D., RICHARDS F. M. THE PURIFICATION AND PROPERTIES OF NEUROSPORA MALATE DEHYDROGENASE. Arch Biochem Biophys. 1965 Mar;109:466–479. doi: 10.1016/0003-9861(65)90391-7. [DOI] [PubMed] [Google Scholar]
  14. Naigre R., Kalck P., Roques C., Roux I., Michel G. Comparison of antimicrobial properties of monoterpenes and their carbonylated products. Planta Med. 1996 Jun;62(3):275–277. doi: 10.1055/s-2006-957877. [DOI] [PubMed] [Google Scholar]
  15. Pellizari V. H., Bezborodnikov S., Quensen J. F., 3rd, Tiedje J. M. Evaluation of strains isolated by growth on naphthalene and biphenyl for hybridization of genes to dioxygenase probes and polychlorinated biphenyl-degrading ability. Appl Environ Microbiol. 1996 Jun;62(6):2053–2058. doi: 10.1128/aem.62.6.2053-2058.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Robinson G. K., Lenn M. J. The bioremediation of polychlorinated biphenyls (PCBs): problems and perspectives. Biotechnol Genet Eng Rev. 1994;12:139–188. doi: 10.1080/02648725.1994.10647911. [DOI] [PubMed] [Google Scholar]
  17. Seeger M., Timmis K. N., Hofer B. Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Appl Environ Microbiol. 1995 Jul;61(7):2654–2658. doi: 10.1128/aem.61.7.2654-2658.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Seto M., Kimbara K., Shimura M., Hatta T., Fukuda M., Yano K. A Novel Transformation of Polychlorinated Biphenyls by Rhodococcus sp. Strain RHA1. Appl Environ Microbiol. 1995 Sep;61(9):3353–3358. doi: 10.1128/aem.61.9.3353-3358.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Trudgill P. W. Microbial metabolism of monoterpenes--recent developments. Biodegradation. 1990;1(2-3):93–105. doi: 10.1007/BF00058829. [DOI] [PubMed] [Google Scholar]
  20. Williamson J. D., Scandalios J. G. The maize (Zea mays L.) Cat1 catalase promoter displays differential binding of nuclear proteins isolated from germinated and developing embryos and from embryos grown in the presence and absence of abscisic acid. Plant Physiol. 1994 Dec;106(4):1373–1380. doi: 10.1104/pp.106.4.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES