Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):1939–1944. doi: 10.1128/aem.63.5.1939-1944.1997

Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization.

J F Cavin 1, L Barthelmebs 1, C Diviès 1
PMCID: PMC168485  PMID: 9143125

Abstract

By using degenerate primers designed from the first 19 N-terminal amino acids of Lactobacillus plantarum p-coumaric acid decarboxylase (PDC), a 56-bp fragment was amplified from L. plantarum in PCRs and used as a probe for screening an L. plantarum genomic bank. Of the 2,880 clones in the genomic bank, one was isolated by colony hybridization and contained a 519-bp open reading frame (pdc gene) followed by a putative terminator structure. The pdc gene is expressed on a monocistronic transcriptional unit, which is transcribed from promoter sequences homologous to Lactococcus promoter sequences. No mRNA from pdc and no PDC activity were detected in uninduced cell extracts, indicating that the expression is transcriptionally regulated by p-coumaric acid, which corresponds to an activation factor up to 6,000. The pdc gene was overexpressed constitutively in Escherichia coli, and the recombinant enzyme was purified and characterized.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERTANI G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951 Sep;62(3):293–300. doi: 10.1128/jb.62.3.293-300.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen J. D., Morrison D. A. Construction and properties of a new insertion vector, pJDC9, that is protected by transcriptional terminators and useful for cloning of DNA from Streptococcus pneumoniae. Gene. 1988 Apr 15;64(1):155–164. doi: 10.1016/0378-1119(88)90489-1. [DOI] [PubMed] [Google Scholar]
  3. Clausen M., Lamb C. J., Megnet R., Doerner P. W. PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccharomyces cerevisiae. Gene. 1994 May 3;142(1):107–112. doi: 10.1016/0378-1119(94)90363-8. [DOI] [PubMed] [Google Scholar]
  4. Davis C. R., Wibowo D. J., Lee T. H., Fleet G. H. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH. Appl Environ Microbiol. 1986 Mar;51(3):539–545. doi: 10.1128/aem.51.3.539-545.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Degrassi G., Polverino De Laureto P., Bruschi C. V. Purification and characterization of ferulate and p-coumarate decarboxylase from Bacillus pumilus. Appl Environ Microbiol. 1995 Jan;61(1):326–332. doi: 10.1128/aem.61.1.326-332.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harada T., Mino Y. Some properties of p-coumarate decarboxylase from Cladosporium phlei. Can J Microbiol. 1976 Sep;22(9):1258–1262. doi: 10.1139/m76-186. [DOI] [PubMed] [Google Scholar]
  7. Huang Z., Dostal L., Rosazza J. P. Microbial transformations of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens. Appl Environ Microbiol. 1993 Jul;59(7):2244–2250. doi: 10.1128/aem.59.7.2244-2250.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huang Z., Dostal L., Rosazza J. P. Purification and characterization of a ferulic acid decarboxylase from Pseudomonas fluorescens. J Bacteriol. 1994 Oct;176(19):5912–5918. doi: 10.1128/jb.176.19.5912-5918.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Labarre C., Guzzo J., Cavin J. F., Diviès C. Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl Environ Microbiol. 1996 Apr;62(4):1274–1282. doi: 10.1128/aem.62.4.1274-1282.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Olsen E. B., Russell J. B., Henick-Kling T. Electrogenic L-malate transport by Lactobacillus plantarum: a basis for energy derivation from malolactic fermentation. J Bacteriol. 1991 Oct;173(19):6199–6206. doi: 10.1128/jb.173.19.6199-6206.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rokeach L. A., Haselby J. A., Hoch S. O. Molecular cloning of a cDNA encoding the human Sm-D autoantigen. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4832–4836. doi: 10.1073/pnas.85.13.4832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. WHITING G. C., CARR J. G. Metabolism of cinnamic acid and hydroxy-cinnamic acids by Lactobacillus pastorianus var. quinicus. Nature. 1959 Oct 31;184(Suppl 18):1427–1428. doi: 10.1038/1841427a0. [DOI] [PubMed] [Google Scholar]
  14. Zago A., Degrassi G., Bruschi C. V. Cloning, sequencing, and expression in Escherichia coli of the Bacillus pumilus gene for ferulic acid decarboxylase. Appl Environ Microbiol. 1995 Dec;61(12):4484–4486. doi: 10.1128/aem.61.12.4484-4486.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES