Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):2001–2006. doi: 10.1128/aem.63.5.2001-2006.1997

An improved enzyme-linked immunosorbent assay for whole-cell determination of methanogens in samples from anaerobic reactors.

A H Sørensen 1, B K Ahring 1
PMCID: PMC168490  PMID: 9143130

Abstract

An enzyme-linked immunosorbent assay was developed for the detection of whole cells of methanogens in samples from anaerobic continuously stirred tank digesters treating slurries of solid waste. The assay was found to allow for quantitative analysis of the most important groups of methanogens in samples from anaerobic digesters in a reproducible manner. Polyclonal antisera against eight strains of methanogens were employed in the test. The specificities of the antisera were increased by adsorption with cross-reacting cells. The reproducibility of the assay depended on the use of high-quality microtiter plates and the addition of dilute hydrochloric acid to the samples. In an experiment on different digester samples, the test demonstrated a unique pattern of different methanogenic strains present in each sample. The limited preparatory work required for the assay and the simple assay design make the test well suited for routine analysis of large numbers of samples and thus for process surveillance during operation of biogas digesters.

Full Text

The Full Text of this article is available as a PDF (265.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahring B. K., Schmidt J. E., Winther-Nielsen M., Macario A. J., Conway de Macario E. Effect of medium composition and sludge removal on the production, composition, and architecture of thermophilic (55 degrees C) acetate-utilizing granules from an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol. 1993 Aug;59(8):2538–2545. doi: 10.1128/aem.59.8.2538-2545.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angelidaki I., Petersen S. P., Ahring B. K. Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl Microbiol Biotechnol. 1990 Jul;33(4):469–472. doi: 10.1007/BF00176668. [DOI] [PubMed] [Google Scholar]
  3. Archer D. B. Detection and quantitation of methanogens by enzyme-linked immunosorbent assay. Appl Environ Microbiol. 1984 Oct;48(4):797–801. doi: 10.1128/aem.48.4.797-801.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Conway de Macario E., Macario A. J., Wolin M. J. Specific antisera and immunological procedures for characterization of methanogenic bacteria. J Bacteriol. 1982 Jan;149(1):320–328. doi: 10.1128/jb.149.1.320-328.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Conway de Macario E., Wolin M. J., Macario A. J. Antibody analysis of relationships among methanogenic bacteria. J Bacteriol. 1982 Jan;149(1):316–319. doi: 10.1128/jb.149.1.316-319.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuchs G., Stupperich E., Thauer R. K. Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol. 1978 Apr 27;117(1):61–66. doi: 10.1007/BF00689352. [DOI] [PubMed] [Google Scholar]
  7. Hendriksen H. V., Ahring B. K. Combined removal of nitrate and carbon in granular sludge: substrate competition and activities. Antonie Van Leeuwenhoek. 1996 Jan;69(1):33–39. doi: 10.1007/BF00641609. [DOI] [PubMed] [Google Scholar]
  8. Kemp H. A., Archer D. B., Morgan M. R. Enzyme-Linked Immunosorbent Assays for the Specific and Sensitive Quantification of Methanosarcina mazei and Methanobacterium bryantii. Appl Environ Microbiol. 1988 Apr;54(4):1003–1008. doi: 10.1128/aem.54.4.1003-1008.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kobayashi H. A., Conway de Macario E., Williams R. S., Macario A. J. Direct characterization of methanogens in two high-rate anaerobic biological reactors. Appl Environ Microbiol. 1988 Mar;54(3):693–698. doi: 10.1128/aem.54.3.693-698.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Macario A. J., Conway de Macario E., Ney U., Schoberth S. M., Sahm H. Shifts in methanogenic subpopulations measured with antibody probes in a fixed-bed loop anaerobic bioreactor treating sulfite evaporator condensate. Appl Environ Microbiol. 1989 Aug;55(8):1996–2001. doi: 10.1128/aem.55.8.1996-2001.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Macario A. J., Conway de Macario E. Quantitative immunologic analysis of the methanogenic flora of digestors reveals a considerable diversity. Appl Environ Microbiol. 1988 Jan;54(1):79–86. doi: 10.1128/aem.54.1.79-86.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Poulsen L. K., Ballard G., Stahl D. A. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol. 1993 May;59(5):1354–1360. doi: 10.1128/aem.59.5.1354-1360.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Raskin L., Poulsen L. K., Noguera D. R., Rittmann B. E., Stahl D. A. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol. 1994 Apr;60(4):1241–1248. doi: 10.1128/aem.60.4.1241-1248.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schmidt J. E., Macario A. J., Ahring B. K., Conway de Macario E. Effect of magnesium on methanogenic subpopulations in a thermophilic acetate-degrading granular consortium. Appl Environ Microbiol. 1992 Mar;58(3):862–868. doi: 10.1128/aem.58.3.862-868.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Strayer R. F., Tiedje J. M. Application of the fluorescent-antibody technique to the study of a methanogenic bacterium in lake sediments. Appl Environ Microbiol. 1978 Jan;35(1):192–198. doi: 10.1128/aem.35.1.192-198.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Touzel J. P., Conway de Macario E., Nölling J., De Vos W. M., Zhilina T., Lysenko A. M. DNA relatedness among some thermophilic members of the genus Methanobacterium: emendation of the species Methanobacterium thermoautotrophicum and rejection of Methanobacterium thermoformicicum as a synonym of Methanobacterium thermoautotrophicum. Int J Syst Bacteriol. 1992 Jul;42(3):408–411. doi: 10.1099/00207713-42-3-408. [DOI] [PubMed] [Google Scholar]
  17. Visser F. A., van Lier J. B., Macario A. J., Conway de Macario E. Diversity and population dynamics of methanogenic bacteria in a granular consortium. Appl Environ Microbiol. 1991 Jun;57(6):1728–1734. doi: 10.1128/aem.57.6.1728-1734.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ward T. E., Frea J. I. Sediment distribution of methanogenic bacteria in lake erie and cleveland harbor. Appl Environ Microbiol. 1980 Mar;39(3):597–603. doi: 10.1128/aem.39.3.597-603.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zhao Y., Zhang H., Boone D. R., Mah R. A. Isolation and characterization of a fast-growing, thermophilic methanobacterium species. Appl Environ Microbiol. 1986 Nov;52(5):1227–1229. doi: 10.1128/aem.52.5.1227-1229.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES