Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1981 Mar;33(2):175–186.

Huntington disease and Tourette syndrome. II. Uptake of glutamic acid and other amino acids by fibroblasts.

D E Comings, I E Goetz, J Holden, J Holtz
PMCID: PMC1684945  PMID: 6452058

Abstract

Injection of kainic acid, a rigid analog of the excitatory neurotransmitter glutamic acid (glu), into the neostriatum of rats produces a condition that mimics Huntington disease (HD) in at least 12 different morphological and biochemical parameters. These results suggested that one of the possible basic mechanisms in HD is a defect in the presynaptic of glial uptake of glu, resulting in chronic hyperstimulation and death of a specific set of neurons. To test this hypothesis, the uptake of glu was studied in 12 carefully matched sets of control-HD pairs and two lines of Tourette syndrome fibroblasts. Although the first six sets suggested a glutamate transport defect in HD cells, examination of 12 sets indicated that there were no significant differences between control and HD cells. The fibroblasts showed both a high and low affinity uptake of glutamic acid. Sodium dependent uptake of L-glutamate (L-glu) minus D-glutamate (D-glu) at 100, 1,000, and 10,000 Micrometers glutamate was normal in HD and Tourette syndrome cells.

Full text

PDF
175

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balcar V. J., Borg J., Mandel P. High affinity uptake of L-glutamate and L-aspartate by glial cells. J Neurochem. 1977 Jan;28(1):87–93. doi: 10.1111/j.1471-4159.1977.tb07712.x. [DOI] [PubMed] [Google Scholar]
  2. Balcar V. J., Johnston G. A. Glutamate uptake by brain slices and its relation to the depolarization of neurones by acidic amino acids. J Neurobiol. 1972;3(4):295–301. doi: 10.1002/neu.480030403. [DOI] [PubMed] [Google Scholar]
  3. Balcar V. J., Johnston G. A. High affinity uptake of transmitters: studies on the uptake of L-aspartate, GABA, L-glutamate and glycine in cat spinal cord. J Neurochem. 1973 Feb;20(2):529–539. doi: 10.1111/j.1471-4159.1973.tb12152.x. [DOI] [PubMed] [Google Scholar]
  4. Balcar V. J., Johnston G. A. The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices. J Neurochem. 1972 Nov;19(11):2657–2666. doi: 10.1111/j.1471-4159.1972.tb01325.x. [DOI] [PubMed] [Google Scholar]
  5. Benjamin A. M., Quastel J. H. Cerebral uptakes and exchange diffusion in vitro of L- and D-glutamates. J Neurochem. 1976 Mar;26(3):431–441. doi: 10.1111/j.1471-4159.1976.tb01493.x. [DOI] [PubMed] [Google Scholar]
  6. Bennett J. P., Jr, Logan W. J., Snyder S. H. Amino acid neurotransmitter candidates: sodium-dependent high-affinity uptake by unique synaptosomal fractions. Science. 1972 Dec 1;178(4064):997–999. doi: 10.1126/science.178.4064.997. [DOI] [PubMed] [Google Scholar]
  7. Bennett J. P., Jr, Logan W. J., Snyder S. H. Amino acids as central nervous transmitters: the influence of ions, amino acid analogues, and ontogeny on transport systems for L-glutamic and L-aspartic acids and glycine into central nervous synaptosomes of the rat. J Neurochem. 1973 Dec;21(6):1533–1550. doi: 10.1111/j.1471-4159.1973.tb06037.x. [DOI] [PubMed] [Google Scholar]
  8. Bennett J. P., Jr, Mulder A. H., Snyder S. H. Neurochemical correlates of synaptically active amino acids. Life Sci. 1974 Sep 15;15(6):1045–1056. doi: 10.1016/s0024-3205(74)80002-0. [DOI] [PubMed] [Google Scholar]
  9. Borg J., Balcar V. J., Mandel P. Effect of cyclic nucleotides on high affinity uptake of L-glutamate and taurine in glial and neuroblastoma cells. Brain Res. 1979 Apr 20;166(1):113–120. doi: 10.1016/0006-8993(79)90653-x. [DOI] [PubMed] [Google Scholar]
  10. Borg J., Balcar V. J., Mandel P. Effect of cyclic nucleotides on high affinity uptake of L-glutamate and taurine in glial and neuroblastoma cells. Brain Res. 1979 Apr 20;166(1):113–120. doi: 10.1016/0006-8993(79)90653-x. [DOI] [PubMed] [Google Scholar]
  11. Comings D. E., Pekkala A., Schuh J. R., Kuo P. C., Chan S. I. Huntington disease and Tourette syndrome. I. Electron spin resonance of bed ghosts. Am J Hum Genet. 1981 Mar;33(2):166–174. [PMC free article] [PubMed] [Google Scholar]
  12. Coyle J. T., Schwarcz R. Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea. Nature. 1976 Sep 16;263(5574):244–246. doi: 10.1038/263244a0. [DOI] [PubMed] [Google Scholar]
  13. Curtis D. R., Duggan A. W., Johnston G. A. The inactivation of extracellularly administered amino acids in the feline spinal cord. Exp Brain Res. 1970 Jun 25;10(5):447–462. doi: 10.1007/BF00234262. [DOI] [PubMed] [Google Scholar]
  14. Curtis D. R., Johnston G. A. Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol. 1974;69(0):97–188. doi: 10.1007/3-540-06498-2_3. [DOI] [PubMed] [Google Scholar]
  15. Davidoff R. A., Adair R. High affinity amino acid transport by frog spinal cord slices. J Neurochem. 1975 Mar;24(3):545–552. doi: 10.1111/j.1471-4159.1975.tb07673.x. [DOI] [PubMed] [Google Scholar]
  16. Divac I., Fonnum F., Storm-Mathisen J. High affinity uptake of glutamate in terminals of corticostriatal axons. Nature. 1977 Mar 24;266(5600):377–378. doi: 10.1038/266377a0. [DOI] [PubMed] [Google Scholar]
  17. Eldridge R., Sweet R., Lake R., Ziegler M., Shapiro A. K. Gilles de la Tourette's syndrome: clinical, genetic, psychologic, and biochemical aspects in 21 selected families. Neurology. 1977 Feb;27(2):115–124. doi: 10.1212/wnl.27.2.115. [DOI] [PubMed] [Google Scholar]
  18. Faivre-Bauman A., Rossier J., Benda P. Glutamate accumulation by a clone of glial cells. Brain Res. 1974 Aug 16;76(2):371–375. doi: 10.1016/0006-8993(74)90473-9. [DOI] [PubMed] [Google Scholar]
  19. Garcia-Sancho J., Sanchez A., Christensen H. N. Role of protein dissociation in the transport of acidic amino acids by the Ehrlich ascites tumor cell. Biochim Biophys Acta. 1977 Jan 21;464(2):295–312. doi: 10.1016/0005-2736(77)90005-0. [DOI] [PubMed] [Google Scholar]
  20. HEINZ E., LOEWE U., DESPOPOULOS A., PFEIFFER B. TRANSPORT AND METABOLISM OF GLUTAMATE IN EHRLICH ASCITES CARCINOMA CELLS. Biochem Z. 1964 Nov 6;340:487–502. [PubMed] [Google Scholar]
  21. Hamberger A. Amino acid uptake in neuronal and glial cell fractions from rabbit cerebral cortex. Brain Res. 1971 Aug 7;31(1):169–178. doi: 10.1016/0006-8993(71)90641-x. [DOI] [PubMed] [Google Scholar]
  22. Heinz E., Pichler A. G., Pfeiffer B. Studies on the transport of glutamate in Ehrlich cells--inhibition by other amino acids and stimulation by H-ions. Biochem Z. 1965 Sep 30;342(5):542–552. [PubMed] [Google Scholar]
  23. Henn F. A., Goldstein M. N., Hamberger A. Uptake of the neurotransmitter candidate glutamate by glia. Nature. 1974 Jun 14;249(458):663–664. doi: 10.1038/249663a0. [DOI] [PubMed] [Google Scholar]
  24. Henn F. A., Hamberger A. Glial cell function: uptake of transmitter substances. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2686–2690. doi: 10.1073/pnas.68.11.2686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hertz L., Schousboe A., Boechler N., Mukerji S., Fedoroff S. Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem Res. 1978 Feb;3(1):1–14. doi: 10.1007/BF00964356. [DOI] [PubMed] [Google Scholar]
  26. Iversen L. L. Catecholamine uptake processes. Br Med Bull. 1973 May;29(2):130–135. doi: 10.1093/oxfordjournals.bmb.a070982. [DOI] [PubMed] [Google Scholar]
  27. Johnson J. L. Glutamic acid as a synaptic transmitter in the nervous system. A review. Brain Res. 1972 Feb 11;37(1):1–19. doi: 10.1016/0006-8993(72)90343-5. [DOI] [PubMed] [Google Scholar]
  28. Johnston G. A. Glutamate and aspartate as transmitters in the spinal cord. Adv Biochem Psychopharmacol. 1976;15:175–184. [PubMed] [Google Scholar]
  29. Levi G., Raiteri M. Detectability of high and low affinity uptake systems for GABA and glutamate in rat brain slices and synaptosomes. Life Sci I. 1973 Jan 15;12(2):81–88. doi: 10.1016/0024-3205(73)90064-7. [DOI] [PubMed] [Google Scholar]
  30. Logan W. J., Snyder S. H. High affinity uptake systems for glycine, glutamic and aspaspartic acids in synaptosomes of rat central nervous tissues. Brain Res. 1972 Jul 20;42(2):413–431. doi: 10.1016/0006-8993(72)90540-9. [DOI] [PubMed] [Google Scholar]
  31. McGeer E. G., McGeer P. L. Duplication of biochemical changes of Huntington's chorea by intrastriatal injections of glutamic and kainic acids. Nature. 1976 Oct 7;263(5577):517–519. doi: 10.1038/263517a0. [DOI] [PubMed] [Google Scholar]
  32. McGeer E. G., McGeer P. L., Singh K. Kainate-induced degeneration of neostriatal neurons: dependency upon corticostriatal tract. Brain Res. 1978 Jan 13;139(2):381–383. doi: 10.1016/0006-8993(78)90941-1. [DOI] [PubMed] [Google Scholar]
  33. Michaelis E. K., Michaelis M. L., Boyarsky L. L. High-affinity glutamic acid binding to brain synaptic membranes. Biochim Biophys Acta. 1974 Nov 15;367(3):338–348. doi: 10.1016/0005-2736(74)90090-x. [DOI] [PubMed] [Google Scholar]
  34. Reid K. G., Utech N. M., Holden J. T. Multiple transport components for dicarboxylic amino acids in Streptococcus faecalis. J Biol Chem. 1970 Oct 25;245(20):5261–5272. [PubMed] [Google Scholar]
  35. Roberts P. J., Keen P. (14C)glutamate uptake and compartmentation in glia of rat dorsal sensory ganglion. J Neurochem. 1974 Jul;23(1):201–209. doi: 10.1111/j.1471-4159.1974.tb06935.x. [DOI] [PubMed] [Google Scholar]
  36. Roberts P. J., Watkins J. C. Structural requirements for the inhibition for L-glutamate uptake by glia and nerve endings. Brain Res. 1975 Feb 21;85(1):120–125. doi: 10.1016/0006-8993(75)91016-1. [DOI] [PubMed] [Google Scholar]
  37. Schrier B. K., Thompson E. J. On the role of glial cells in the mammalian nervous system. Uptake, excretion, and metabolism of putative neurotransmitters by cultured glial tumor cells. J Biol Chem. 1974 Mar 25;249(6):1769–1780. [PubMed] [Google Scholar]
  38. Snyder S. H., Young A. B., Bennett J. P., Mulder A. H. Synaptic biochemistry of amino acids. Fed Proc. 1973 Oct;32(10):2039–2047. [PubMed] [Google Scholar]
  39. Stallcup W. B., Bulloch K., Baetge E. E. Coupled transport of glutamate and sodium in a cerebellar nerve cell line. J Neurochem. 1979 Jan;32(1):57–65. doi: 10.1111/j.1471-4159.1979.tb04509.x. [DOI] [PubMed] [Google Scholar]
  40. Wheeler D. D. A kinetic analysis of sodium dependent glutamic acid transport in peripheral nerve. J Neurochem. 1976 Feb;26(2):239–246. doi: 10.1111/j.1471-4159.1976.tb04471.x. [DOI] [PubMed] [Google Scholar]
  41. Wheeler D. D., Boyarsky L. L. Influx of glutamic acid in peripheal nerve. Energy, ionic, and PH dependence. J Neurobiol. 1971;2(2):181–190. doi: 10.1002/neu.480020210. [DOI] [PubMed] [Google Scholar]
  42. Wofsey A. R., Kuhar M. J., Snyder S. H. A unique synaptosomal fraction, which accumulates glutamic and aspartic acids, in brain tissue. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1102–1106. doi: 10.1073/pnas.68.6.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES