Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2117–2123. doi: 10.1128/aem.63.6.2117-2123.1997

Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes.

L Leloup 1, S D Ehrlich 1, M Zagorec 1, F Morel-Deville 1
PMCID: PMC168500  PMID: 9172327

Abstract

Single-crossover homologous integration in Lactobacillus sake was studied. Integration was conducted with nonreplicative delivery vector pRV300. This vector is composed of a pBluescript SK- replicon for propagation in Escherichia coli and an erythromycin resistance marker. Random chromosomal DNA fragments of L. sake 23K ranging between 0.3 and 3.4 kb were inserted into pRV300. The resulting plasmids were able to integrate into the chromosome by homologous recombination as single copies and were maintained stably. The single cross-over integration frequency was logarithmically proportional to the extent of homology between 0.3 and 1.2 kb and reached a maximum value of 1.4 x 10(3) integrants/micrograms of DNA. We used this integration strategy to inactivate the ptsI gene, encoding enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system, and the lacL gene, which is one of the two genes required for the synthesis of a functional beta-galactosidase. The results indicated that our method facilitates genetic analysis of L. sake.

Full Text

The Full Text of this article is available as a PDF (989.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. G., McKay L. L. Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol. 1983 Sep;46(3):549–552. doi: 10.1128/aem.46.3.549-552.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biswas I., Gruss A., Ehrlich S. D., Maguin E. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol. 1993 Jun;175(11):3628–3635. doi: 10.1128/jb.175.11.3628-3635.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chopin M. C., Chopin A., Rouault A., Galleron N. Insertion and amplification of foreign genes in the Lactococcus lactis subsp. lactis chromosome. Appl Environ Microbiol. 1989 Jul;55(7):1769–1774. doi: 10.1128/aem.55.7.1769-1774.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Khasanov F. K., Zvingila D. J., Zainullin A. A., Prozorov A. A., Bashkirov V. I. Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology. Mol Gen Genet. 1992 Sep;234(3):494–497. doi: 10.1007/BF00538711. [DOI] [PubMed] [Google Scholar]
  6. Knauf H. J., Vogel R. F., Hammes W. P. Cloning, sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl Environ Microbiol. 1992 Mar;58(3):832–839. doi: 10.1128/aem.58.3.832-839.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kok J., van der Vossen J. M., Venema G. Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol. 1984 Oct;48(4):726–731. doi: 10.1128/aem.48.4.726-731.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lauret R., Morel-Deville F., Berthier F., Champomier-Verges M., Postma P., Ehrlich S. D., Zagorec M. Carbohydrate Utilization in Lactobacillus sake. Appl Environ Microbiol. 1996 Jun;62(6):1922–1927. doi: 10.1128/aem.62.6.1922-1927.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Leenhouts K. J., Kok J., Venema G. Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1989 Feb;55(2):394–400. doi: 10.1128/aem.55.2.394-400.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leenhouts K. J., Kok J., Venema G. Lactococcal plasmid pWV01 as an integration vector for lactococci. Appl Environ Microbiol. 1991 Sep;57(9):2562–2567. doi: 10.1128/aem.57.9.2562-2567.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leenhouts K. J., Kok J., Venema G. Stability of Integrated Plasmids in the Chromosome of Lactococcus lactis. Appl Environ Microbiol. 1990 Sep;56(9):2726–2735. doi: 10.1128/aem.56.9.2726-2735.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leer R. J., Christiaens H., Verstraete W., Peters L., Posno M., Pouwels P. H. Gene disruption in Lactobacillus plantarum strain 80 by site-specific recombination: isolation of a mutant strain deficient in conjugated bile salt hydrolase activity. Mol Gen Genet. 1993 May;239(1-2):269–272. doi: 10.1007/BF00281627. [DOI] [PubMed] [Google Scholar]
  13. Michel B., Ehrlich S. D. Recombination efficiency is a quadratic function of the length of homology during plasmid transformation of Bacillus subtilis protoplasts and Escherichia coli competent cells. EMBO J. 1984 Dec 1;3(12):2879–2884. doi: 10.1002/j.1460-2075.1984.tb02224.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Obst M., Meding E. R., Vogel R. F., Hammes W. P. Two genes encoding the beta-galactosidase of Lactobacillus sake. Microbiology. 1995 Dec;141(Pt 12):3059–3066. doi: 10.1099/13500872-141-12-3059. [DOI] [PubMed] [Google Scholar]
  15. Schillinger U., Kaya M., Lücke F. K. Behaviour of Listeria monocytogenes in meat and its control by a bacteriocin-producing strain of Lactobacillus sake. J Appl Bacteriol. 1991 Jun;70(6):473–478. doi: 10.1111/j.1365-2672.1991.tb02743.x. [DOI] [PubMed] [Google Scholar]
  16. Shen P., Huang H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics. 1986 Mar;112(3):441–457. doi: 10.1093/genetics/112.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Simon D., Chopin A. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie. 1988 Apr;70(4):559–566. doi: 10.1016/0300-9084(88)90093-4. [DOI] [PubMed] [Google Scholar]
  18. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  19. Stentz R., Lauret R., Ehrlich S. D., Morel-Deville F., Zagorec M. Molecular cloning and analysis of the ptsHI operon in Lactobacillus sake. Appl Environ Microbiol. 1997 Jun;63(6):2111–2116. doi: 10.1128/aem.63.6.2111-2116.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tichaczek P. S., Vogel R. F., Hammes W. P. Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH 673. Microbiology. 1994 Feb;140(Pt 2):361–367. doi: 10.1099/13500872-140-2-361. [DOI] [PubMed] [Google Scholar]
  21. Vagner V., Ehrlich S. D. Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. 1988 Sep;170(9):3978–3982. doi: 10.1128/jb.170.9.3978-3982.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Watt V. M., Ingles C. J., Urdea M. S., Rutter W. J. Homology requirements for recombination in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4768–4772. doi: 10.1073/pnas.82.14.4768. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES