Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2124–2130. doi: 10.1128/aem.63.6.2124-2130.1997

The effects of adding lactococcal proteinase on the growth rate of Lactococcus lactis in milk depend on the type of enzyme.

S Helinck 1, J Richard 1, V Juillard 1
PMCID: PMC168501  PMID: 9172328

Abstract

Increasing the proteolytic activity of Lactococcus lactis cultures in milk by adding the corresponding proteinase resulted in a stimulation of the growth rate regardless of the strain and the type of proteinase, demonstrating that the rate of casein degradation was responsible for the growth rate limitation of L. lactis in milk. However, the stimulation was only transient, and the reduction in growth rate in the poststimulation phase depended on the type of cell envelope proteinase. When a PI-type proteinase was added, three causes were involved in the subsequent reduction in growth rate: degradation of the added proteinase, repression of the proteolytic activity expressed by the cells, and competition for peptide uptake. When a PIII-type proteinase was added, the cessation of stimulation was due to the autoproteolysis of the added enzyme only.

Full Text

The Full Text of this article is available as a PDF (171.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruinenberg P. G., Vos P., De Vos W. M. Proteinase overproduction in Lactococcus lactis strains: regulation and effect on growth and acidification in milk. Appl Environ Microbiol. 1992 Jan;58(1):78–84. doi: 10.1128/aem.58.1.78-84.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chopin A. Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):21–37. doi: 10.1111/j.1574-6976.1993.tb00011.x. [DOI] [PubMed] [Google Scholar]
  3. Dornan S., Collins M. A. High efficiency electroporation of Lactococcus lactis subsp. lactis LM0230 with plasmid pGB301. Lett Appl Microbiol. 1990 Aug;11(2):62–64. doi: 10.1111/j.1472-765x.1990.tb01275.x. [DOI] [PubMed] [Google Scholar]
  4. Exterkate F. A. Differences in short peptide-substrate cleavage by two cell-envelope-located serine proteinases of Lactococcus lactis subsp. cremoris are related to secondary binding specificity. Appl Microbiol Biotechnol. 1990 Jul;33(4):401–406. doi: 10.1007/BF00176654. [DOI] [PubMed] [Google Scholar]
  5. Flambard B., Richard J., Juillard V. Interaction between proteolytic strains of Lactococcus lactis influenced by different types of proteinase during growth in milk. Appl Environ Microbiol. 1997 Jun;63(6):2131–2135. doi: 10.1128/aem.63.6.2131-2135.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gasson M. J. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol. 1983 Apr;154(1):1–9. doi: 10.1128/jb.154.1.1-9.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Juillard V., Laan H., Kunji E. R., Jeronimus-Stratingh C. M., Bruins A. P., Konings W. N. The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes beta-casein into more than one hundred different oligopeptides. J Bacteriol. 1995 Jun;177(12):3472–3478. doi: 10.1128/jb.177.12.3472-3478.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Juillard V., Le Bars D., Kunji E. R., Konings W. N., Gripon J. C., Richard J. Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl Environ Microbiol. 1995 Aug;61(8):3024–3030. doi: 10.1128/aem.61.8.3024-3030.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kunji E. R., Hagting A., De Vries C. J., Juillard V., Haandrikman A. J., Poolman B., Konings W. N. Transport of beta-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J Biol Chem. 1995 Jan 27;270(4):1569–1574. doi: 10.1074/jbc.270.4.1569. [DOI] [PubMed] [Google Scholar]
  10. Kunji E. R., Mierau I., Hagting A., Poolman B., Konings W. N. The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek. 1996 Oct;70(2-4):187–221. doi: 10.1007/BF00395933. [DOI] [PubMed] [Google Scholar]
  11. Kunji E. R., Mierau I., Poolman B., Konings W. N., Venema G., Kok J. Fate of peptides in peptidase mutants of Lactococcus lactis. Mol Microbiol. 1996 Jul;21(1):123–131. doi: 10.1046/j.1365-2958.1996.6231339.x. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laan H., Konings W. N. Autoproteolysis of the Extracellular Serine Proteinase of Lactococcus lactis subsp. cremoris Wg2. Appl Environ Microbiol. 1991 Sep;57(9):2586–2590. doi: 10.1128/aem.57.9.2586-2590.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laan H., Konings W. N. Mechanism of Proteinase Release from Lactococcus lactis subsp. cremoris Wg2. Appl Environ Microbiol. 1989 Dec;55(12):3101–3106. doi: 10.1128/aem.55.12.3101-3106.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leenhouts K. J., Gietema J., Kok J., Venema G. Chromosomal stabilization of the proteinase genes in Lactococcus lactis. Appl Environ Microbiol. 1991 Sep;57(9):2568–2575. doi: 10.1128/aem.57.9.2568-2575.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marugg J. D., Meijer W., van Kranenburg R., Laverman P., Bruinenberg P. G., de Vos W. M. Medium-dependent regulation of proteinase gene expression in Lactococcus lactis: control of transcription initiation by specific dipeptides. J Bacteriol. 1995 Jun;177(11):2982–2989. doi: 10.1128/jb.177.11.2982-2989.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McGarry A., Law J., Coffey A., Daly C., Fox P. F., Fitzgerald G. F. Effect of genetically modifying the lactococcal proteolytic system on ripening and flavor development in cheddar cheese. Appl Environ Microbiol. 1994 Dec;60(12):4226–4233. doi: 10.1128/aem.60.12.4226-4233.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meijer W., Marugg J. D., Hugenholtz J. Regulation of Proteolytic Enzyme Activity in Lactococcus lactis. Appl Environ Microbiol. 1996 Jan;62(1):156–161. doi: 10.1128/aem.62.1.156-161.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mierau I., Kunji E. R., Leenhouts K. J., Hellendoorn M. A., Haandrikman A. J., Poolman B., Konings W. N., Venema G., Kok J. Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. J Bacteriol. 1996 May;178(10):2794–2803. doi: 10.1128/jb.178.10.2794-2803.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Poolman B., Konings W. N. Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J Bacteriol. 1988 Feb;170(2):700–707. doi: 10.1128/jb.170.2.700-707.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Poolman B., Kunji E. R., Hagting A., Juillard V., Konings W. N. The proteolytic pathway of Lactococcus lactis. Soc Appl Bacteriol Symp Ser. 1995;24:65S–75S. [PubMed] [Google Scholar]
  22. Poolman B., Smid E. J., Veldkamp H., Konings W. N. Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris. J Bacteriol. 1987 Apr;169(4):1460–1468. doi: 10.1128/jb.169.4.1460-1468.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reid J. R., Ng K. H., Moore C. H., Coolbear T., Pritchard G. G. Comparison of bovine beta-casein hydrolysis by PI and PIII-type proteinases from Lactococcus lactis subsp. cremoris [corrected]. Appl Microbiol Biotechnol. 1991 Dec;36(3):344–351. doi: 10.1007/BF00208154. [DOI] [PubMed] [Google Scholar]
  24. Smith J. S., Hillier A. J., Lees G. J. The nature of the stimulation of the growth of Streptococcus lactis by yeast extract. J Dairy Res. 1975 Feb;42(1):123–138. doi: 10.1017/s0022029900015156. [DOI] [PubMed] [Google Scholar]
  25. Terzaghi B. E., Sandine W. E. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol. 1975 Jun;29(6):807–813. doi: 10.1128/am.29.6.807-813.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Visser S., Exterkate F. A., Slangen C. J., de Veer G. J. Comparative Study of Action of Cell Wall Proteinases from Various Strains of Streptococcus cremoris on Bovine alpha(s1)-, beta-, and kappa-Casein. Appl Environ Microbiol. 1986 Nov;52(5):1162–1166. doi: 10.1128/aem.52.5.1162-1166.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zucht H. D., Raida M., Adermann K., Mägert H. J., Forssmann W. G. Casocidin-I: a casein-alpha s2 derived peptide exhibits antibacterial activity. FEBS Lett. 1995 Sep 25;372(2-3):185–188. doi: 10.1016/0014-5793(95)00974-e. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES