Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2147–2154. doi: 10.1128/aem.63.6.2147-2154.1997

Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin.

P E Hammer 1, D S Hill 1, S T Lam 1, K H Van Pée 1, J M Ligon 1
PMCID: PMC168505  PMID: 9172332

Abstract

Pyrrolnitrin is a secondary metabolite of Pseudomonas and Burkholderia sp. strains with strong antifungal activity. Production of pyrrolnitrin has been correlated with the ability of some bacteria to control plant diseases caused by fungal pathogens, including the damping-off pathogen Rhizoctonia solani. Pseudomonas fluorescens BL915 has been reported to produce pyrrolnitrin and to be an effective biocontrol agent for this pathogen. We have isolated a 32-kb genomic DNA fragment from this strain that contains genes involved in the biosynthesis of pyrrolnitrin. Marker-exchange mutagenesis of this DNA with Tn5 revealed the presence of a 6.2-kb region that contains genes required for the synthesis of pyrrolnitrin. The nucleotide sequence of the 6.2-kb region was determined and found to contain a cluster of four genes that are required for the production of pyrrolnitrin. Deletion mutations in any of the four genes resulted in a pyrrolnitrin-nonproducing phenotype. The putative coding sequences of the four individual genes were cloned by PCR and fused to the tac promoter from Escherichia coli. In each case, the appropriate tac promoter-pyrrolnitrin gene fusion was shown to complement the pyrrolnitrin-negative phenotype of the corresponding deletion mutant. Transfer of the four gene cluster to E. coli resulted in the production of pyrrolnitrin by this organism, thereby demonstrating that the four genes are sufficient for the production of this metabolite and represent all of the genes required to encode the pathway for pyrrolnitrin biosynthesis.

Full Text

The Full Text of this article is available as a PDF (280.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharonowitz Y., Av-Gay Y., Schreiber R., Cohen G. Characterization of a broad-range disulfide reductase from Streptomyces clavuligerus and its possible role in beta-lactam antibiotic biosynthesis. J Bacteriol. 1993 Feb;175(3):623–629. doi: 10.1128/jb.175.3.623-629.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. BERTANI G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951 Sep;62(3):293–300. doi: 10.1128/jb.62.3.293-300.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berg D. E., Davies J., Allet B., Rochaix J. D. Transposition of R factor genes to bacteriophage lambda. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3628–3632. doi: 10.1073/pnas.72.9.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berg D. E., Weiss A., Crossland L. Polarity of Tn5 insertion mutations in Escherichia coli. J Bacteriol. 1980 May;142(2):439–446. doi: 10.1128/jb.142.2.439-446.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  7. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  8. Brunel F., Davison J. Cloning and sequencing of Pseudomonas genes encoding vanillate demethylase. J Bacteriol. 1988 Oct;170(10):4924–4930. doi: 10.1128/jb.170.10.4924-4930.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dairi T., Nakano T., Aisaka K., Katsumata R., Hasegawa M. Cloning and nucleotide sequence of the gene responsible for chlorination of tetracycline. Biosci Biotechnol Biochem. 1995 Jun;59(6):1099–1106. doi: 10.1271/bbb.59.1099. [DOI] [PubMed] [Google Scholar]
  10. Ditta G., Stanfield S., Corbin D., Helinski D. R. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. doi: 10.1073/pnas.77.12.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  12. Gaffney T. D., Lam S. T., Ligon J., Gates K., Frazelle A., Di Maio J., Hill S., Goodwin S., Torkewitz N., Allshouse A. M. Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant Microbe Interact. 1994 Jul-Aug;7(4):455–463. doi: 10.1094/mpmi-7-0455. [DOI] [PubMed] [Google Scholar]
  13. Hill D. S., Stein J. I., Torkewitz N. R., Morse A. M., Howell C. R., Pachlatko J. P., Becker J. O., Ligon J. M. Cloning of Genes Involved in the Synthesis of Pyrrolnitrin from Pseudomonas fluorescens and Role of Pyrrolnitrin Synthesis in Biological Control of Plant Disease. Appl Environ Microbiol. 1994 Jan;60(1):78–85. doi: 10.1128/aem.60.1.78-85.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kirner S., Krauss S., Sury G., Lam S. T., Ligon J. M., van Pée K. H. The non-haem chloroperoxidase from Pseudomonas fluorescens and its relationship to pyrrolnitrin biosynthesis. Microbiology. 1996 Aug;142(Pt 8):2129–2135. doi: 10.1099/13500872-142-8-2129. [DOI] [PubMed] [Google Scholar]
  15. Laville J., Voisard C., Keel C., Maurhofer M., Défago G., Haas D. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1562–1566. doi: 10.1073/pnas.89.5.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mason J. R., Cammack R. The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol. 1992;46:277–305. doi: 10.1146/annurev.mi.46.100192.001425. [DOI] [PubMed] [Google Scholar]
  17. Nakatsu C. H., Straus N. A., Wyndham R. C. The nucleotide sequence of the Tn5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology. 1995 Feb;141(Pt 2):485–495. doi: 10.1099/13500872-141-2-485. [DOI] [PubMed] [Google Scholar]
  18. Sarniguet A., Kraus J., Henkels M. D., Muehlchen A. M., Loper J. E. The sigma factor sigma s affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12255–12259. doi: 10.1073/pnas.92.26.12255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schroth M. N., Hancock J. G. Disease-suppressive soil and root-colonizing bacteria. Science. 1982 Jun 25;216(4553):1376–1381. doi: 10.1126/science.216.4553.1376. [DOI] [PubMed] [Google Scholar]
  20. Thomashow L. S., Weller D. M., Bonsall R. F., Pierson L. S. Production of the antibiotic phenazine-1-carboxylic Acid by fluorescent pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol. 1990 Apr;56(4):908–912. doi: 10.1128/aem.56.4.908-912.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thomashow L. S., Weller D. M. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol. 1988 Aug;170(8):3499–3508. doi: 10.1128/jb.170.8.3499-3508.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Van Pée K. H. Bacterial haloperoxidases and their role in secondary metabolism. Biotechnol Adv. 1990;8(1):185–205. doi: 10.1016/0734-9750(90)90012-z. [DOI] [PubMed] [Google Scholar]
  23. Vincent M. N., Harrison L. A., Brackin J. M., Kovacevich P. A., Mukerji P., Weller D. M., Pierson E. A. Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl Environ Microbiol. 1991 Oct;57(10):2928–2934. doi: 10.1128/aem.57.10.2928-2934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Voisard C., Keel C., Haas D., Dèfago G. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 1989 Feb;8(2):351–358. doi: 10.1002/j.1460-2075.1989.tb03384.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wiesner W., van Pée K. H., Lingens F. Purification and characterization of a novel bacterial non-heme chloroperoxidase from Pseudomonas pyrrocinia. J Biol Chem. 1988 Sep 25;263(27):13725–13732. [PubMed] [Google Scholar]
  26. Young I. G., Rogers B. L., Campbell H. D., Jaworowski A., Shaw D. C. Nucleotide sequence coding for the respiratory NADH dehydrogenase of Escherichia coli. UUG initiation codon. Eur J Biochem. 1981 May;116(1):165–170. doi: 10.1111/j.1432-1033.1981.tb05314.x. [DOI] [PubMed] [Google Scholar]
  27. van Pée K. H. Biosynthesis of halogenated metabolites by bacteria. Annu Rev Microbiol. 1996;50:375–399. doi: 10.1146/annurev.micro.50.1.375. [DOI] [PubMed] [Google Scholar]
  28. van Pée K. H., Salcher O., Fischer P., Bokel M., Lingens F. The biosynthesis of brominated pyrrolnitrin derivatives by Pseudomonas aureofaciens. J Antibiot (Tokyo) 1983 Dec;36(12):1735–1742. doi: 10.7164/antibiotics.36.1735. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES