Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2159–2165. doi: 10.1128/aem.63.6.2159-2165.1997

Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production.

M Dols 1, W Chraibi 1, M Remaud-Simeon 1, N D Lindley 1, P F Monsan 1
PMCID: PMC168507  PMID: 9172334

Abstract

The metabolic and energetic properties of Leuconostoc mesenteroides have been examined with the goal of better understanding the parameters which affect dextransucrase activity and hence allowing the development of strategies for improved dextransucrase production. Glucose and fructose support equivalent specific growth rates (0.6 h-1) under aerobic conditions, but glucose leads to a better biomass yield in anaerobiosis. Both sugars are phosphorylated by specific hexokinases and catabolized through the heterofermentative phosphoketolase pathway. During sucrose-grown cultures, a large fraction of sucrose is converted outside the cell by dextransucrase into dextran and fructose and does not support growth. The other fraction enters the cell, where it is phosphorylated by an inducible sucrose phosphorylase and converted to glucose-6-phosphate (G-6-P) by a constitutive phosphoglucomutase and to heterofermentative products (lactate, acetate, and ethanol). Sucrose supports a higher growth rate (0.98 h-1) than the monosaccharides. When fructose is not consumed simultaneously with G-1-P, the biomass yield relative to ATP is high (16.8 mol of ATP.mol of sucrose-1), and dextransucrase production is directly proportional to growth. However, when the fructose moiety is used, a sink of energy is observed, and dextransucrase production is no longer correlated with growth. As a consequence, fructose catabolism must be avoided to improve the amount of dextransucrase synthesized.

Full Text

The Full Text of this article is available as a PDF (233.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooker B. E. Ultrastructural surface changes associated with dextran synthesis by Leuconostoc mesenteroides. J Bacteriol. 1977 Jul;131(1):288–292. doi: 10.1128/jb.131.1.288-292.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Djouzi Z., Andrieux C., Pelenc V., Somarriba S., Popot F., Paul F., Monsan P., Szylit O. Degradation and fermentation of alpha-gluco-oligosaccharides by bacterial strains from human colon: in vitro and in vivo studies in gnotobiotic rats. J Appl Bacteriol. 1995 Aug;79(2):117–127. doi: 10.1111/j.1365-2672.1995.tb00924.x. [DOI] [PubMed] [Google Scholar]
  3. Dominguez H., Lindley N. D. Complete Sucrose Metabolism Requires Fructose Phosphotransferase Activity in Corynebacterium glutamicum To Ensure Phosphorylation of Liberated Fructose. Appl Environ Microbiol. 1996 Oct;62(10):3878–3880. doi: 10.1128/aem.62.10.3878-3880.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hehre E. J. PRODUCTION FROM SUCROSE OF A-SERO-LOGICALLY REACTIVE POLYSACCHARIDE BY A STERILE BACTERIAL EXTRACT. Science. 1941 Mar 7;93(2410):237–238. doi: 10.1126/science.93.2410.237. [DOI] [PubMed] [Google Scholar]
  5. Hestrin S., Avineri-Shapiro S., Aschner M. The enzymic production of levan. Biochem J. 1943 Oct;37(4):450–456. doi: 10.1042/bj0370450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 1983 Sep;49(3):209–224. doi: 10.1007/BF00399499. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Lawford G. R., Kligerman A., Williams T., Lawford H. G. Dextran biosynthesis and dextransucrase production by continuous culture of Leuconostoc mesenteroides. Biotechnol Bioeng. 1979 Jul;21(7):1121–1131. doi: 10.1002/bit.260210704. [DOI] [PubMed] [Google Scholar]
  9. Loubiere P., Salou P., Leroy M. J., Lindley N. D., Pareilleux A. Electrogenic malate uptake and improved growth energetics of the malolactic bacterium Leuconostoc oenos grown on glucose-malate mixtures. J Bacteriol. 1992 Aug;174(16):5302–5308. doi: 10.1128/jb.174.16.5302-5308.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NEELY W. B., NOTT J. Dextransucrase, an induced enzyme from Leuconostoc mesenteroides. Biochemistry. 1962 Nov;1:1136–1140. doi: 10.1021/bi00912a027. [DOI] [PubMed] [Google Scholar]
  11. Remaud-Simeon M., Lopez-Munguia A., Pelenc V., Paul F., Monsan P. Production and use of glucosyltransferases from Leuconostoc mesenteroides NRRL B-1299 for the synthesis of oligosaccharides containing alpha-(1-->2) linkages. Appl Biochem Biotechnol. 1994 Feb;44(2):101–117. doi: 10.1007/BF02921648. [DOI] [PubMed] [Google Scholar]
  12. Salou P., Loubiere P., Pareilleux A. Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose. Appl Environ Microbiol. 1994 May;60(5):1459–1466. doi: 10.1128/aem.60.5.1459-1466.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sidebotham R. L. Dextrans. Adv Carbohydr Chem Biochem. 1974;30:371–444. doi: 10.1016/s0065-2318(08)60268-1. [DOI] [PubMed] [Google Scholar]
  14. Smith E. E. Biosynthetic relation between the soluble and insoluble dextrans produced by Leuconostoc mesenteroides NRRL B-1299. FEBS Lett. 1970 Dec 23;12(1):33–37. doi: 10.1016/0014-5793(70)80588-9. [DOI] [PubMed] [Google Scholar]
  15. TSUCHIYA H. M., KOEPSELL H. J., CORMAN J., BRYANT G., BOGARD M. O., FEGER V. H., JACKSON R. W. The effect of certain cultural factors on production of dextransucrase by Leuconostoc mesenteroides. J Bacteriol. 1952 Oct;64(4):521–526. doi: 10.1128/jb.64.4.521-526.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES