Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2200–2205. doi: 10.1128/aem.63.6.2200-2205.1997

Photoreactivation compensates for UV damage and restores infectivity to natural marine virus communities.

M G Weinbauer 1, S W Wilhelm 1, C A Suttle 1, D R Garza 1
PMCID: PMC168512  PMID: 9172339

Abstract

We investigated the potential for photoreactivation to restore infectivity to sunlight-damaged natural viral communities in offshore (chlorophyll a, < 0.1 microgram liter-1), coastal (chlorophyll a, ca. 0.2 microgram liter-1), and estuarine (chlorophyll a, ca. 1 to 5 micrograms liter-1) waters of the Gulf of Mexico. In 67% of samples, the light-dependent repair mechanisms of the bacterium Vibrio natriegens restored infectivity to natural viral communities which could not be repaired by light-independent mechanisms. Similarly, exposure of sunlight-damaged natural viral communities to > 312-nm-wavelength sunlight in the presence of the natural bacterial communities restored infectivity to 21 to 26% of sunlight-damaged viruses in oceanic waters and 41 to 52% of the damaged viruses in coastal and estuarine waters. Wavelengths between 370 and 550 nm were responsible for restoring infectivity to the damaged viruses. These results indicate that light-dependent repair, probably photoreactivation, compensated for a large fraction of sunlight-induced DNA damage in natural viral communities and is potentially essential for the maintenance of high concentrations of viruses in surface waters.

Full Text

The Full Text of this article is available as a PDF (174.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein C. Deoxyribonucleic acid repair in bacteriophage. Microbiol Rev. 1981 Mar;45(1):72–98. doi: 10.1128/mr.45.1.72-98.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cullen J. J., Neale P. J., Lesser M. P. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science. 1992 Oct 23;258(5082):646–650. doi: 10.1126/science.258.5082.646. [DOI] [PubMed] [Google Scholar]
  3. DULBECCO R. Experiments on photoreactivation of bacteriophages inactivated with ultraviolet radiation. J Bacteriol. 1950 Mar;59(3):329–347. doi: 10.1128/jb.59.3.329-347.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Holm-Hansen O., Helbling E. W. Polyethylene bags and solar ultraviolet radiation. Science. 1993 Jan 22;259(5094):534–534. doi: 10.1126/science.259.5094.534. [DOI] [PubMed] [Google Scholar]
  5. Kim S. T., Sancar A. Photochemistry, photophysics, and mechanism of pyrimidine dimer repair by DNA photolyase. Photochem Photobiol. 1993 May;57(5):895–904. doi: 10.1111/j.1751-1097.1993.tb09232.x. [DOI] [PubMed] [Google Scholar]
  6. Lu Z., Li Y., Zhang Y., Kutish G. F., Rock D. L., Van Etten J. L. Analysis of 45 kb of DNA located at the left end of the chlorella virus PBCV-1 genome. Virology. 1995 Jan 10;206(1):339–352. doi: 10.1016/s0042-6822(95)80049-2. [DOI] [PubMed] [Google Scholar]
  7. Mitchell D. L., Nairn R. S. The biology of the (6-4) photoproduct. Photochem Photobiol. 1989 Jun;49(6):805–819. doi: 10.1111/j.1751-1097.1989.tb05578.x. [DOI] [PubMed] [Google Scholar]
  8. Park H. W., Kim S. T., Sancar A., Deisenhofer J. Crystal structure of DNA photolyase from Escherichia coli. Science. 1995 Jun 30;268(5219):1866–1872. doi: 10.1126/science.7604260. [DOI] [PubMed] [Google Scholar]
  9. Patrick J. R., Brabham D. E., Achey P. M. Photoreactivity of UV-b damage in bacteriophage phi X174 DNA. Photochem Photobiol. 1981 May;33(5):769–771. doi: 10.1111/j.1751-1097.1981.tb05489.x. [DOI] [PubMed] [Google Scholar]
  10. Regan J. D., Carrier W. L., Gucinski H., Olla B. L., Yoshida H., Fujimura R. K., Wicklund R. I. DNA as a solar dosimeter in the ocean. Photochem Photobiol. 1992 Jul;56(1):35–42. doi: 10.1111/j.1751-1097.1992.tb09599.x. [DOI] [PubMed] [Google Scholar]
  11. Suttle C. A., Chan A. M., Cottrell M. T. Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton. Appl Environ Microbiol. 1991 Mar;57(3):721–726. doi: 10.1128/aem.57.3.721-726.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Suttle C. A., Chan A. M. Dynamics and Distribution of Cyanophages and Their Effect on Marine Synechococcus spp. Appl Environ Microbiol. 1994 Sep;60(9):3167–3174. doi: 10.1128/aem.60.9.3167-3174.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Suttle C. A., Chen F. Mechanisms and rates of decay of marine viruses in seawater. Appl Environ Microbiol. 1992 Nov;58(11):3721–3729. doi: 10.1128/aem.58.11.3721-3729.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Todo T., Takemori H., Ryo H., Ihara M., Matsunaga T., Nikaido O., Sato K., Nomura T. A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4)photoproducts. Nature. 1993 Jan 28;361(6410):371–374. doi: 10.1038/361371a0. [DOI] [PubMed] [Google Scholar]
  15. Tyrrell R. M. Repair of near (365 nm)- and far (254 nm)- UV damage to bacteriophage of Escherichia coli. Photochem Photobiol. 1979 May;29(5):963–970. doi: 10.1111/j.1751-1097.1979.tb07799.x. [DOI] [PubMed] [Google Scholar]
  16. Weinbauer M. G., Suttle C. A. Potential significance of lysogeny to bacteriophage production and bacterial mortality in coastal waters of the gulf of Mexico. Appl Environ Microbiol. 1996 Dec;62(12):4374–4380. doi: 10.1128/aem.62.12.4374-4380.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES