Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2206–2212. doi: 10.1128/aem.63.6.2206-2212.1997

Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli.

J Rapala 1, K Sivonen 1, C Lyra 1, S I Niemelä 1
PMCID: PMC168513  PMID: 9172340

Abstract

Cyanobacterial hepatotoxins, microcystins, are specific inhibitors of serine/threonine protein phosphatases and potent tumor promoters. They have caused several poisonings of animals and also pose a health hazard for humans through the use of water for drinking and recreation. Different strains of the same cyanobacterial species may variously be nontoxic, be neurotoxic, or produce several microcystin variants. It is poorly understood how the amount of toxins varies in a single strain. This laboratory study shows the importance of external growth stimuli in regulating the levels and relative proportions of different microcystin variants in two strains of filamentous, nitrogen-fixing Anabaena spp. The concentration of the toxins in the cells increased with phosphorus. High temperatures (25 to 30 degrees C), together with the highest levels of light studied (test range, 2 to 100 mumol m-2 s-1), decreased their amount. Different structural variants of microcystins responded differently to growth stimuli. Variants of microcystin (MCYST)-LR correlated with temperatures below 25 degrees C, and those of MCYST-RR correlated with higher temperatures. Nitrogen added into the growth medium and increasing temperatures increased the proportion of microcystin variants demethylated in amino acid 3. All variants remained mostly intracellular. Time was the most important factor causing the release of the toxins into the growth medium. Time, nitrogen added into the growth medium, and light fluxes above 25 mumol m-2 s-1 significantly increased the concentrations of the dissolved toxins. According to the results, it thus seems that the reduction of phosphorus loads in bodies of water might play a role in preventing the health hazards that toxic cyanobacterial water blooms pose, not only by decreasing the cyanobacteria but also by decreasing their toxin content.

Full Text

The Full Text of this article is available as a PDF (224.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boland M. P., Taylor M. F., Holmes C. F. Identification and characterisation of a type-1 protein phosphatase from the okadaic acid-producing marine dinoflagellate Prorocentrum lima. FEBS Lett. 1993 Nov 8;334(1):13–17. doi: 10.1016/0014-5793(93)81670-u. [DOI] [PubMed] [Google Scholar]
  2. Carmichael W. W., Beasley V., Bunner D. L., Eloff J. N., Falconer I., Gorham P., Harada K., Krishnamurthy T., Yu M. J., Moore R. E. Naming of cyclic heptapeptide toxins of cyanobacteria (blue-green algae). Toxicon. 1988;26(11):971–973. doi: 10.1016/0041-0101(88)90195-x. [DOI] [PubMed] [Google Scholar]
  3. Carmichael W. W. Cyanobacteria secondary metabolites--the cyanotoxins. J Appl Bacteriol. 1992 Jun;72(6):445–459. doi: 10.1111/j.1365-2672.1992.tb01858.x. [DOI] [PubMed] [Google Scholar]
  4. Harada K., Matsuura K., Suzuki M., Oka H., Watanabe M. F., Oishi S., Dahlem A. M., Beasley V. R., Carmichael W. W. Analysis and purification of toxic peptides from cyanobacteria by reversed-phase high-performance liquid chromatography. J Chromatogr. 1988 Sep 2;448(2):275–283. doi: 10.1016/s0021-9673(01)84589-1. [DOI] [PubMed] [Google Scholar]
  5. Honkanen R. E., Codispoti B. A., Tse K., Boynton A. L., Honkanan R. E. Characterization of natural toxins with inhibitory activity against serine/threonine protein phosphatases. Toxicon. 1994 Mar;32(3):339–350. doi: 10.1016/0041-0101(94)90086-8. [DOI] [PubMed] [Google Scholar]
  6. Honkanen R. E., Zwiller J., Moore R. E., Daily S. L., Khatra B. S., Dukelow M., Boynton A. L. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J Biol Chem. 1990 Nov 15;265(32):19401–19404. [PubMed] [Google Scholar]
  7. Krishnamurthy T., Carmichael W. W., Sarver E. W. Toxic peptides from freshwater cyanobacteria (blue-green algae). I. Isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flos-aquae. Toxicon. 1986;24(9):865–873. doi: 10.1016/0041-0101(86)90087-5. [DOI] [PubMed] [Google Scholar]
  8. MacKintosh C., Beattie K. A., Klumpp S., Cohen P., Codd G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990 May 21;264(2):187–192. doi: 10.1016/0014-5793(90)80245-e. [DOI] [PubMed] [Google Scholar]
  9. Meriluoto J. A., Eriksson J. E. Rapid analysis of peptide toxins in cyanobacteria. J Chromatogr. 1988 Apr 1;438(1):93–99. doi: 10.1016/s0021-9673(00)90236-x. [DOI] [PubMed] [Google Scholar]
  10. Nishiwaki-Matsushima R., Ohta T., Nishiwaki S., Suganuma M., Kohyama K., Ishikawa T., Carmichael W. W., Fujiki H. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol. 1992;118(6):420–424. doi: 10.1007/BF01629424. [DOI] [PubMed] [Google Scholar]
  11. Rouhiainen L., Sivonen K., Buikema W. J., Haselkorn R. Characterization of toxin-producing cyanobacteria by using an oligonucleotide probe containing a tandemly repeated heptamer. J Bacteriol. 1995 Oct;177(20):6021–6026. doi: 10.1128/jb.177.20.6021-6026.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shi L., Carmichael W. W., Miller I. Immuno-gold localization of hepatotoxins in cyanobacterial cells. Arch Microbiol. 1995 Jan;163(1):7–15. doi: 10.1007/BF00262197. [DOI] [PubMed] [Google Scholar]
  13. Sivonen K. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Environ Microbiol. 1990 Sep;56(9):2658–2666. doi: 10.1128/aem.56.9.2658-2666.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sivonen K., Namikoshi M., Evans W. R., Carmichael W. W., Sun F., Rouhiainen L., Luukkainen R., Rinehart K. L. Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. Appl Environ Microbiol. 1992 Aug;58(8):2495–2500. doi: 10.1128/aem.58.8.2495-2500.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tsuji K., Naito S., Kondo F., Watanabe M. F., Suzuki S., Nakazawa H., Suzuki M., Shimada T., Harada K. A clean-up method for analysis of trace amounts of microcystins in lake water. Toxicon. 1994 Oct;32(10):1251–1259. doi: 10.1016/0041-0101(94)90354-9. [DOI] [PubMed] [Google Scholar]
  16. Utkilen H., Gjølme N. Iron-stimulated toxin production in Microcystis aeruginosa. Appl Environ Microbiol. 1995 Feb;61(2):797–800. doi: 10.1128/aem.61.2.797-800.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Utkilen H., Gjølme N. Toxin Production by Microcystis aeruginosa as a Function of Light in Continuous Cultures and Its Ecological Significance. Appl Environ Microbiol. 1992 Apr;58(4):1321–1325. doi: 10.1128/aem.58.4.1321-1325.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Watanabe M. F., Oishi S. Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Appl Environ Microbiol. 1985 May;49(5):1342–1344. doi: 10.1128/aem.49.5.1342-1344.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES