Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2258–2265. doi: 10.1128/aem.63.6.2258-2265.1997

Detection of RTX toxin genes in gram-negative bacteria with a set of specific probes.

P Kuhnert 1, B Heyberger-Meyer 1, A P Burnens 1, J Nicolet 1, J Frey 1
PMCID: PMC168518  PMID: 9172345

Abstract

The family of RTX (RTX representing repeats in the structural toxin) toxins is composed of several protein toxins with a characteristic nonapeptide glycine-rich repeat motif. Most of its members were shown to have cytolytic activity. By comparing the genetic relationships of the RTX toxin genes we established a set of 10 gene probes to be used for screening as-yet-unknown RTX toxin genes in bacterial species. The probes include parts of apxIA, apxIIA, and apxIIIA from Actinobacillus pleuropneumoniae, cyaA from Bordetella pertusis, frpA from Neisseria meningitidis, prtC from Erwinia chrysanthemi, hlyA and elyA from Escherichia coli, aaltA from Actinobacillus actinomycetemcomitans and lktA from Pasteurella haemolytica. A panel of pathogenic and nonpathogenic gram-negative bacteria were investigated for the presence of RTX toxin genes. The probes detected all known genes for RTX toxins. Moreover, we found potential RTX toxin genes in several pathogenic bacterial species for which no such toxins are known yet. This indicates that RTX or RTX-like toxins are widely distributed among pathogenic gram-negative bacteria. The probes generated by PCR and the hybridization method were optimized to allow broad-range screening for RTX toxin genes in one step. This included the binding of unlabelled probes to a nylon filter and subsequent hybridization of the filter with labelled genomic DNA of the strain to be tested. The method constitutes a powerful tool for the assessment of the potential pathogenicity of poorly characterized strains intended to be used in biotechnological applications. Moreover, it is useful for the detection of already-known or new RTX toxin genes in bacteria of medical importance.

Full Text

The Full Text of this article is available as a PDF (488.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betsou F., Sismeiro O., Danchin A., Guiso N. Cloning and sequence of the Bordetella bronchiseptica adenylate cyclase-hemolysin-encoding gene: comparison with the Bordetella pertussis gene. Gene. 1995 Aug 30;162(1):165–166. doi: 10.1016/0378-1119(95)00339-8. [DOI] [PubMed] [Google Scholar]
  2. Blum G., Falbo V., Caprioli A., Hacker J. Gene clusters encoding the cytotoxic necrotizing factor type 1, Prs-fimbriae and alpha-hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol Lett. 1995 Feb 15;126(2):189–195. doi: 10.1111/j.1574-6968.1995.tb07415.x. [DOI] [PubMed] [Google Scholar]
  3. Blum G., Ott M., Lischewski A., Ritter A., Imrich H., Tschäpe H., Hacker J. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun. 1994 Feb;62(2):606–614. doi: 10.1128/iai.62.2.606-614.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boehm D. F., Welch R. A., Snyder I. S. Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes. Infect Immun. 1990 Jun;58(6):1959–1964. doi: 10.1128/iai.58.6.1959-1964.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burrows L. L., Lo R. Y. Molecular characterization of an RTX toxin determinant from Actinobacillus suis. Infect Immun. 1992 Jun;60(6):2166–2173. doi: 10.1128/iai.60.6.2166-2173.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang Y. F., Ma D. P., Shi J., Chengappa M. M. Molecular characterization of a leukotoxin gene from a Pasteurella haemolytica-like organism, encoding a new member of the RTX toxin family. Infect Immun. 1993 May;61(5):2089–2095. doi: 10.1128/iai.61.5.2089-2095.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang Y. F., Shi J., Ma D. P., Shin S. J., Lein D. H. Molecular analysis of the Actinobacillus pleuropneumoniae RTX toxin-III gene cluster. DNA Cell Biol. 1993 May;12(4):351–362. doi: 10.1089/dna.1993.12.351. [DOI] [PubMed] [Google Scholar]
  8. Chang Y. F., Young R., Struck D. K. Cloning and characterization of a hemolysin gene from Actinobacillus (Haemophilus) pleuropneumoniae. DNA. 1989 Nov;8(9):635–647. doi: 10.1089/dna.1.1989.8.635. [DOI] [PubMed] [Google Scholar]
  9. Chang Y. F., Young R., Struck D. K. The Actinobacillus pleuropneumoniae hemolysin determinant: unlinked appCA and appBD loci flanked by pseudogenes. J Bacteriol. 1991 Aug;173(16):5151–5158. doi: 10.1128/jb.173.16.5151-5158.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Delepelaire P., Wandersman C. Protease secretion by Erwinia chrysanthemi. Proteases B and C are synthesized and secreted as zymogens without a signal peptide. J Biol Chem. 1989 May 25;264(15):9083–9089. [PubMed] [Google Scholar]
  11. Delepelaire P., Wandersman C. Protein secretion in gram-negative bacteria. The extracellular metalloprotease B from Erwinia chrysanthemi contains a C-terminal secretion signal analogous to that of Escherichia coli alpha-hemolysin. J Biol Chem. 1990 Oct 5;265(28):17118–17125. [PubMed] [Google Scholar]
  12. Duong F., Lazdunski A., Cami B., Murgier M. Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene. 1992 Nov 2;121(1):47–54. doi: 10.1016/0378-1119(92)90160-q. [DOI] [PubMed] [Google Scholar]
  13. Felmlee T., Pellett S., Welch R. A. Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J Bacteriol. 1985 Jul;163(1):94–105. doi: 10.1128/jb.163.1.94-105.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frey J., Haldimann A., Nicolet J., Boffini A., Prentki P. Sequence analysis and transcription of the apxI operon (hemolysin I) from Actinobacillus pleuropneumoniae. Gene. 1994 May 3;142(1):97–102. doi: 10.1016/0378-1119(94)90361-1. [DOI] [PubMed] [Google Scholar]
  15. Frey J., Nicolet J. Hemolysin patterns of Actinobacillus pleuropneumoniae. J Clin Microbiol. 1990 Feb;28(2):232–236. doi: 10.1128/jcm.28.2.232-236.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gillespie M. J., Smutko J., Haraszthy G. G., Zambon J. J. Isolation and partial characterization of the Campylobacter rectus cytotoxin. Microb Pathog. 1993 Mar;14(3):203–215. doi: 10.1006/mpat.1993.1020. [DOI] [PubMed] [Google Scholar]
  17. Glaser P., Ladant D., Sezer O., Pichot F., Ullmann A., Danchin A. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol Microbiol. 1988 Jan;2(1):19–30. [PubMed] [Google Scholar]
  18. Glaser P., Sakamoto H., Bellalou J., Ullmann A., Danchin A. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J. 1988 Dec 1;7(12):3997–4004. doi: 10.1002/j.1460-2075.1988.tb03288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gygi D., Nicolet J., Hughes C., Frey J. Functional analysis of the Ca(2+)-regulated hemolysin I operon of Actinobacillus pleuropneumoniae serotype 1. Infect Immun. 1992 Aug;60(8):3059–3064. doi: 10.1128/iai.60.8.3059-3064.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Higgins C. F., Gallagher M. P., Mimmack M. L., Pearce S. R. A family of closely related ATP-binding subunits from prokaryotic and eukaryotic cells. Bioessays. 1988 Apr;8(4):111–116. doi: 10.1002/bies.950080406. [DOI] [PubMed] [Google Scholar]
  21. Håkansson S., Bergman T., Vanooteghem J. C., Cornelis G., Wolf-Watz H. YopB and YopD constitute a novel class of Yersinia Yop proteins. Infect Immun. 1993 Jan;61(1):71–80. doi: 10.1128/iai.61.1.71-80.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jansen R., Briaire J., Kamp E. M., Gielkens A. L., Smits M. A. Structural analysis of the Actinobacillus pleuropneumoniae-RTX-toxin I (ApxI) operon. Infect Immun. 1993 Sep;61(9):3688–3695. doi: 10.1128/iai.61.9.3688-3695.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kraig E., Dailey T., Kolodrubetz D. Nucleotide sequence of the leukotoxin gene from Actinobacillus actinomycetemcomitans: homology to the alpha-hemolysin/leukotoxin gene family. Infect Immun. 1990 Apr;58(4):920–929. doi: 10.1128/iai.58.4.920-929.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kuhnert P., Nicolet J., Frey J. Rapid and accurate identification of Escherichia coli K-12 strains. Appl Environ Microbiol. 1995 Nov;61(11):4135–4139. doi: 10.1128/aem.61.11.4135-4139.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Laoide B. M., Ullmann A. Virulence dependent and independent regulation of the Bordetella pertussis cya operon. EMBO J. 1990 Apr;9(4):999–1005. doi: 10.1002/j.1460-2075.1990.tb08202.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lo R. Y. Molecular characterization of cytotoxins produced by Haemophilus, Actinobacillus, Pasteurella. Can J Vet Res. 1990 Apr;54 (Suppl):S33–S35. [PubMed] [Google Scholar]
  27. Lo R. Y., Strathdee C. A., Shewen P. E. Nucleotide sequence of the leukotoxin genes of Pasteurella haemolytica A1. Infect Immun. 1987 Sep;55(9):1987–1996. doi: 10.1128/iai.55.9.1987-1996.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lobo A. L., Welch R. A. Identification and assay of RTX family of cytolysins. Methods Enzymol. 1994;235:667–678. doi: 10.1016/0076-6879(94)35180-5. [DOI] [PubMed] [Google Scholar]
  29. Maier E., Reinhard N., Benz R., Frey J. Channel-forming activity and channel size of the RTX toxins ApxI, ApxII, and ApxIII of Actinobacillus pleuropneumoniae. Infect Immun. 1996 Nov;64(11):4415–4423. doi: 10.1128/iai.64.11.4415-4423.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McDaniel T. K., Jarvis K. G., Donnenberg M. S., Kaper J. B. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1664–1668. doi: 10.1073/pnas.92.5.1664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mühldorfer I., Blum G., Donohue-Rolfe A., Heier H., Olschläger T., Tschäpe H., Wallner U., Hacker J. Characterization of Escherichia coli strains isolated from environmental water habitats and from stool samples of healthy volunteers. Res Microbiol. 1996 Oct;147(8):625–635. doi: 10.1016/0923-2508(96)84019-8. [DOI] [PubMed] [Google Scholar]
  32. Mühldorfer I., Hacker J. Genetic aspects of Escherichia coli virulence. Microb Pathog. 1994 Mar;16(3):171–181. doi: 10.1006/mpat.1994.1018. [DOI] [PubMed] [Google Scholar]
  33. Nakahama K., Yoshimura K., Marumoto R., Kikuchi M., Lee I. S., Hase T., Matsubara H. Cloning and sequencing of Serratia protease gene. Nucleic Acids Res. 1986 Jul 25;14(14):5843–5855. doi: 10.1093/nar/14.14.5843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Noegel A., Rdest U., Goebel W. Determination of the functions of hemolytic plasmid pHly152 of Escherichia coli. J Bacteriol. 1981 Jan;145(1):233–247. doi: 10.1128/jb.145.1.233-247.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Salvi R. J., Ahroon W., Saunders S. S., Arnold S. A. Evoked potentials: computer-automated threshold-tracking procedure using an objective detection criterion. Ear Hear. 1987 Jun;8(3):151–156. [PubMed] [Google Scholar]
  36. Schmidt H., Beutin L., Karch H. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun. 1995 Mar;63(3):1055–1061. doi: 10.1128/iai.63.3.1055-1061.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sebo P., Glaser P., Sakamoto H., Ullmann A. High-level synthesis of active adenylate cyclase toxin of Bordetella pertussis in a reconstructed Escherichia coli system. Gene. 1991 Jul 31;104(1):19–24. doi: 10.1016/0378-1119(91)90459-o. [DOI] [PubMed] [Google Scholar]
  38. Thompson S. A., Wang L. L., Sparling P. F. Cloning and nucleotide sequence of frpC, a second gene from Neisseria meningitidis encoding a protein similar to RTX cytotoxins. Mol Microbiol. 1993 Jul;9(1):85–96. doi: 10.1111/j.1365-2958.1993.tb01671.x. [DOI] [PubMed] [Google Scholar]
  39. Thompson S. A., Wang L. L., West A., Sparling P. F. Neisseria meningitidis produces iron-regulated proteins related to the RTX family of exoproteins. J Bacteriol. 1993 Feb;175(3):811–818. doi: 10.1128/jb.175.3.811-818.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wandersman C., Delepelaire P. TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4776–4780. doi: 10.1073/pnas.87.12.4776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Welch R. A., Bauer M. E., Kent A. D., Leeds J. A., Moayeri M., Regassa L. B., Swenson D. L. Battling against host phagocytes: the wherefore of the RTX family of toxins? Infect Agents Dis. 1995 Dec;4(4):254–272. [PubMed] [Google Scholar]
  42. Welch R. A., Forestier C., Lobo A., Pellett S., Thomas W., Jr, Rowe G. The synthesis and function of the Escherichia coli hemolysin and related RTX exotoxins. FEMS Microbiol Immunol. 1992 Sep;5(1-3):29–36. doi: 10.1111/j.1574-6968.1992.tb05883.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES