Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2273–2280. doi: 10.1128/aem.63.6.2273-2280.1997

Cloning, sequencing, and overexpression of the Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase (pckA) gene.

M Laivenieks 1, C Vieille 1, J G Zeikus 1
PMCID: PMC168520  PMID: 9172347

Abstract

The phosphoenolpyruvate (PEP) carboxykinase-encoding gene from the anaerobic, CO2-fixing, succinate-producing bacterium Anaerobiospirillum succiniciproducens was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a 532-residue polypeptide with a calculated molecular mass of 58.7 kDa. The sequence of the A. succiniciproducens PEP carboxykinase was similar to those of all known ATP/ADP-dependent PEP carboxykinases. In particular, the A. succiniciproducens enzyme was 67.3% identical and 79.2% similar to the E. coli enzyme. The A. succiniciproducens pckA transcription start site was determined, and putative promoter regions were identified. The recombinant enzyme was overexpressed in E. coli. The purified enzyme was indiscernible from the native enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and had the same activity as the native enzyme.

Full Text

The Full Text of this article is available as a PDF (478.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alff-Steinberger C. Evidence for a coding pattern on the non-coding strand of the E. coli genome. Nucleic Acids Res. 1984 Mar 12;12(5):2235–2241. doi: 10.1093/nar/12.5.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cannata J. J., De Flombaum M. A. Phosphenolpyruvate carboxykinases from bakers' yeast. Kinetics of phosphoenolpyruvate formation. J Biol Chem. 1974 Jun 10;249(11):3356–3365. [PubMed] [Google Scholar]
  3. Chao Y. P., Patnaik R., Roof W. D., Young R. F., Liao J. C. Control of gluconeogenic growth by pps and pck in Escherichia coli. J Bacteriol. 1993 Nov;175(21):6939–6944. doi: 10.1128/jb.175.21.6939-6944.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colombo G., Carlson G. M., Lardy H. A. Phosphoenolpyruvate carboxykinase (guanosine 5'-triphosphate) from rat liver cytosol. Dual-cation requirement for the carboxylation reaction. Biochemistry. 1981 May 12;20(10):2749–2757. doi: 10.1021/bi00513a008. [DOI] [PubMed] [Google Scholar]
  5. Cymeryng C., Cazzulo J. J., Cannata J. J. Phosphoenolpyruvate carboxykinase from Trypanosoma cruzi. Purification and physicochemical and kinetic properties. Mol Biochem Parasitol. 1995 Jul;73(1-2):91–101. doi: 10.1016/0166-6851(95)00099-m. [DOI] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haarasilta S., Oura E. On the activity and regulation of anaplerotic and gluconeogenetic enzymes during the growth process of baker's yeast. The biphasic growth. Eur J Biochem. 1975 Mar 3;52(1):1–7. doi: 10.1111/j.1432-1033.1975.tb03966.x. [DOI] [PubMed] [Google Scholar]
  8. Hansen E. J., Juni E. Two routes for synthesis of phosphoenolpyruvate from C4-dicarboxylic acids in Escherichia coli. Biochem Biophys Res Commun. 1974 Aug 19;59(4):1204–1210. doi: 10.1016/0006-291x(74)90442-2. [DOI] [PubMed] [Google Scholar]
  9. Harley C. B., Reynolds R. P. Analysis of E. coli promoter sequences. Nucleic Acids Res. 1987 Mar 11;15(5):2343–2361. doi: 10.1093/nar/15.5.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jabalquinto A. M., Cardemil E. The kinetic mechanism of yeast phosphoenolpyruvate carboxykinase. Biochim Biophys Acta. 1993 Jan 15;1161(1):85–90. doi: 10.1016/0167-4838(93)90200-b. [DOI] [PubMed] [Google Scholar]
  11. Kapke P. A., Brown A. T., Lillich T. T. Carbon dioxide metabolism by Capnocytophaga ochracea: identification, characterization, and regulation of a phosphoenolpyruvate carboxykinase. Infect Immun. 1980 Mar;27(3):756–766. doi: 10.1128/iai.27.3.756-766.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kormanec J., Farkasovský M. Isolation of total RNA from yeast and bacteria and detection of rRNA in northern blots. Biotechniques. 1994 Nov;17(5):838–842. [PubMed] [Google Scholar]
  13. Krebs A., Bridger W. A. The kinetic properties of phosphoenolpyruvate carboxykinase of Escherichia coli. Can J Biochem. 1980 Apr;58(4):309–318. doi: 10.1139/o80-041. [DOI] [PubMed] [Google Scholar]
  14. Macy J. M., Ljungdahl L. G., Gottschalk G. Pathway of succinate and propionate formation in Bacteroides fragilis. J Bacteriol. 1978 Apr;134(1):84–91. doi: 10.1128/jb.134.1.84-91.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matte A., Goldie H., Sweet R. M., Delbaere L. T. Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold. J Mol Biol. 1996 Feb 16;256(1):126–143. doi: 10.1006/jmbi.1996.0072. [DOI] [PubMed] [Google Scholar]
  16. Medina V., Pontarollo R., Glaeske D., Tabel H., Goldie H. Sequence of the pckA gene of Escherichia coli K-12: relevance to genetic and allosteric regulation and homology of E. coli phosphoenolpyruvate carboxykinase with the enzymes from Trypanosoma brucei and Saccharomyces cerevisiae. J Bacteriol. 1990 Dec;172(12):7151–7156. doi: 10.1128/jb.172.12.7151-7156.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mermelstein L. D., Welker N. E., Bennett G. N., Papoutsakis E. T. Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology (N Y) 1992 Feb;10(2):190–195. doi: 10.1038/nbt0292-190. [DOI] [PubMed] [Google Scholar]
  18. Müller M., Müller H., Holzer H. Immunochemical studies on catabolite inactivation of phosphoenolpyruvate carboxykinase in Saccharomyces cerevisiae. J Biol Chem. 1981 Jan 25;256(2):723–727. [PubMed] [Google Scholar]
  19. Osterås M., Driscoll B. T., Finan T. M. Molecular and expression analysis of the Rhizobium meliloti phosphoenolpyruvate carboxykinase (pckA) gene. J Bacteriol. 1995 Mar;177(6):1452–1460. doi: 10.1128/jb.177.6.1452-1460.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Osterås M., Finan T. M., Stanley J. Site-directed mutagenesis and DNA sequence of pckA of Rhizobium NGR234, encoding phosphoenolpyruvate carboxykinase: gluconeogenesis and host-dependent symbiotic phenotype. Mol Gen Genet. 1991 Nov;230(1-2):257–269. doi: 10.1007/BF00290676. [DOI] [PubMed] [Google Scholar]
  21. Parks T. D., Leuther K. K., Howard E. D., Johnston S. A., Dougherty W. G. Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal Biochem. 1994 Feb 1;216(2):413–417. doi: 10.1006/abio.1994.1060. [DOI] [PubMed] [Google Scholar]
  22. Podkovyrov S. M., Zeikus J. G. Purification and characterization of phosphoenolpyruvate carboxykinase,a catabolic CO2-fixing enzyme, from Anaerobiospirillum succiniciproducens. J Gen Microbiol. 1993 Feb;139(2):223–228. doi: 10.1099/00221287-139-2-223. [DOI] [PubMed] [Google Scholar]
  23. Samuelov N. S., Lamed R., Lowe S., Zeikus J. G. Influence of CO(2)-HCO(3) Levels and pH on Growth, Succinate Production, and Enzyme Activities of Anaerobiospirillum succiniciproducens. Appl Environ Microbiol. 1991 Oct;57(10):3013–3019. doi: 10.1128/aem.57.10.3013-3019.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scovill W. H., Schreier H. J., Bayles K. W. Identification and characterization of the pckA gene from Staphylococcus aureus. J Bacteriol. 1996 Jun;178(11):3362–3364. doi: 10.1128/jb.178.11.3362-3364.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tari L. W., Matte A., Pugazhenthi U., Goldie H., Delbaere L. T. Snapshot of an enzyme reaction intermediate in the structure of the ATP-Mg2+-oxalate ternary complex of Escherichia coli PEP carboxykinase. Nat Struct Biol. 1996 Apr;3(4):355–363. doi: 10.1038/nsb0496-355. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES