Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2293–2299. doi: 10.1128/aem.63.6.2293-2299.1997

Isolation and properties of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose.

H Boumerdassi 1, C Monnet 1, M Desmazeaud 1, G Corrieu 1
PMCID: PMC168522  PMID: 9172349

Abstract

Following treatment with the mutagen N-methyl-N'-nitro-N-nitrosoguanidine, three mutants of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 that produced diacetyl and acetoin from glucose were isolated. The lactate dehydrogenase activity of these mutants was strongly attenuated, and the mutants produced less lactate than the parental strain. The kinetic properties of lactate dehydrogenase of strain CNRZ 483 and the mutants revealed differences in the affinity of the enzyme for pyruvate, NADH, and fructose-1,6-diphosphate. When cultured aerobically, strain CNRZ 483 transformed 2.3% of glucose to acetoin and produced no diacetyl or 2,3-butanediol. Under the same conditions, mutants 483L1, 483L2, and 483L3 transformed 42.0, 78.9, and 75.8%, respectively, of glucose to C4 compounds (diacetyl, acetoin, and 2,3-butanediol). Anaerobically, strain CNRZ 483 produced no C4 compounds, while mutants 483L1, 483L2, and 483L3 transformed 2.0, 37.0, and 25.8% of glucose to acetoin and 2,3-butanediol. In contrast to the parental strain, the NADH balance showed that the mutants regenerated most of the NAD via NADH oxidase under aerobic conditions and by ethanol production under anaerobic conditions.

Full Text

The Full Text of this article is available as a PDF (181.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbe K., Takahashi S., Yamada T. Involvement of oxygen-sensitive pyruvate formate-lyase in mixed-acid fermentation by Streptococcus mutans under strictly anaerobic conditions. J Bacteriol. 1982 Oct;152(1):175–182. doi: 10.1128/jb.152.1.175-182.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anders R. F., Hogg D. M., Jago G. R. Formation of hydrogen peroxide by group N streptococci and its effect on their growth and metabolism. Appl Microbiol. 1970 Apr;19(4):608–612. doi: 10.1128/am.19.4.608-612.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bassit N., Boquien C. Y., Picque D., Corrieu G. Effect of Initial Oxygen Concentration on Diacetyl and Acetoin Production by Lactococcus lactis subsp. lactis biovar diacetylactis. Appl Environ Microbiol. 1993 Jun;59(6):1893–1897. doi: 10.1128/aem.59.6.1893-1897.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Brown A. T., Wittenberger C. L. Fructose-1,6-diphosphate-dependent lactate dehydrogenase from a cariogenic streptococcus: purification and regulatory properties. J Bacteriol. 1972 May;110(2):604–615. doi: 10.1128/jb.110.2.604-615.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bruhn J. C., Collins E. B. Reduced nicotinamide adenine dinucleotide oxidase of Streptococcus diacetilactis. J Dairy Sci. 1970 Jul;53(7):857–860. doi: 10.3168/jds.S0022-0302(70)86307-X. [DOI] [PubMed] [Google Scholar]
  7. Crow V. L., Pritchard G. G. Fructose 1,6-diphosphate-activated L-lactate dehydrogenase from Streptococcus lactis: kinetic properties and factors affecting activation. J Bacteriol. 1977 Jul;131(1):82–91. doi: 10.1128/jb.131.1.82-91.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crow V. L. Properties of 2,3-Butanediol Dehydrogenases from Lactococcus lactis subsp. lactis in Relation to Citrate Fermentation. Appl Environ Microbiol. 1990 Jun;56(6):1656–1665. doi: 10.1128/aem.56.6.1656-1665.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dexter F., Coffin S., Woodward J. Performance of anesthesia machines' devices that are not part of the Food and Drug Administration's daily checkout. J Clin Monit. 1997 May;13(3):171–179. doi: 10.1023/a:1007302030065. [DOI] [PubMed] [Google Scholar]
  10. Garvie E. I. Bacterial lactate dehydrogenases. Microbiol Rev. 1980 Mar;44(1):106–139. doi: 10.1128/mr.44.1.106-139.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Godon J. J., Chopin M. C., Ehrlich S. D. Branched-chain amino acid biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol. 1992 Oct;174(20):6580–6589. doi: 10.1128/jb.174.20.6580-6589.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goupil N., Corthier G., Ehrlich S. D., Renault P. Imbalance of leucine flux in Lactococcus lactis and its use for the isolation of diacetyl-overproducing strains. Appl Environ Microbiol. 1996 Jul;62(7):2636–2640. doi: 10.1128/aem.62.7.2636-2640.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HARVEY R. J., COLLINS E. B. Citrate transport system of Streptococcus diacetilactis. J Bacteriol. 1962 May;83:1005–1009. doi: 10.1128/jb.83.5.1005-1009.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jonas H. A., Anders R. F., Jago G. R. Factors affecting the activity of the lactate dehydrognease of Streptococcus cremoris. J Bacteriol. 1972 Aug;111(2):397–403. doi: 10.1128/jb.111.2.397-403.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McKay L. L., Baldwin K. A. Altered metabolism in a Streptococcus lactis C2 mutant deficient in lactic dehydrogenase. J Dairy Sci. 1974 Feb;57(2):181–186. doi: 10.3168/jds.S0022-0302(74)84857-5. [DOI] [PubMed] [Google Scholar]
  16. Monnet C., Schmitt P., Divies C. Development and Use of a Screening Procedure for Production of (alpha)-Acetolactate by Lactococcus lactis subsp. lactis biovar diacetylactis Strains. Appl Environ Microbiol. 1997 Feb;63(2):793–795. doi: 10.1128/aem.63.2.793-795.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Phalip V., Monnet C., Schmitt P., Renault P., Godon J. J., Diviès C. Purification and properties of the alpha-acetolactate decarboxylase from Lactococcus lactis subsp. lactis NCDO 2118. FEBS Lett. 1994 Aug 29;351(1):95–99. doi: 10.1016/0014-5793(94)00820-5. [DOI] [PubMed] [Google Scholar]
  18. Platteeuw C., Hugenholtz J., Starrenburg M., van Alen-Boerrigter I., de Vos W. M. Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl Environ Microbiol. 1995 Nov;61(11):3967–3971. doi: 10.1128/aem.61.11.3967-3971.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smart J. B., Thomas T. D. Effect of oxygen on lactose metabolism in lactic streptococci. Appl Environ Microbiol. 1987 Mar;53(3):533–541. doi: 10.1128/aem.53.3.533-541.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Starrenburg M. J., Hugenholtz J. Citrate Fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol. 1991 Dec;57(12):3535–3540. doi: 10.1128/aem.57.12.3535-3540.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Swindell S. R., Benson K. H., Griffin H. G., Renault P., Ehrlich S. D., Gasson M. J. Genetic manipulation of the pathway for diacetyl metabolism in Lactococcus lactis. Appl Environ Microbiol. 1996 Jul;62(7):2641–2643. doi: 10.1128/aem.62.7.2641-2643.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Terzaghi B. E., Sandine W. E. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol. 1975 Jun;29(6):807–813. doi: 10.1128/am.29.6.807-813.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thomas T. D. Regulation of lactose fermentation in group N streptococci. Appl Environ Microbiol. 1976 Oct;32(4):474–478. doi: 10.1128/aem.32.4.474-478.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Verhue W. M., Tjan F. S. Study of the Citrate Metabolism of Lactococcus lactis subsp. lactis Biovar Diacetylactis by Means of C Nuclear Magnetic Resonance. Appl Environ Microbiol. 1991 Nov;57(11):3371–3377. doi: 10.1128/aem.57.11.3371-3377.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES