Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2355–2360. doi: 10.1128/aem.63.6.2355-2360.1997

Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration.

K A Presser 1, D A Ratkowsky 1, T Ross 1
PMCID: PMC168528  PMID: 9172355

Abstract

The growth rate responses of Escherichia coli M23 (a nonpathogenic strain) to suboptimal pH and lactic acid concentration were determined. Growth rates were measured turbidimetrically at 20 degrees C in the range of pH 2.71 to 8.45. The total concentration of lactic acid was fixed at specific values, and the pH was varied by the addition of a strong acid (hydrochloric) or base (sodium hydroxide) to enable the determination of undissociated and dissociated lactic acid concentrations under each condition. In the absence of lactic acid, E. coli grew at pH 4.0 but not at pH 3.7 and was unable to grow in the presence of > or = 8.32 mM undissociated lactic acid. Growth rate was linearly related to hydrogen ion concentration in the absence of lactic acid. In the range 0 to 100 mM lactic acid, growth rate was also linearly related to undissociated lactic acid concentration. A mathematical model to describe these observations was developed based on a Bĕlehrádek-like model for the effects of water activity and temperature. This model was expanded to describe the effects of pH and lactic acid by the inclusion of novel terms for the inhibition due to the presence of hydrogen ions, undissociated lactic acid, and dissociated lactic acid species. Preliminary data obtained for 200 and 500 mM total lactic acid concentrations show that the response to very high lactic acid concentrations was less well described by the model. However, for 0 to 100 mM lactic acid, the model described well the qualitative and quantitative features of the response.

Full Text

The Full Text of this article is available as a PDF (181.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdul-Raouf U. M., Beuchat L. R., Ammar M. S. Survival and growth of Escherichia coli O157:H7 in ground, roasted beef as affected by pH, acidulants, and temperature. Appl Environ Microbiol. 1993 Aug;59(8):2364–2368. doi: 10.1128/aem.59.8.2364-2368.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abdul-Raouf U. M., Beuchat L. R., Ammar M. S. Survival and growth of Escherichia coli O157:H7 on salad vegetables. Appl Environ Microbiol. 1993 Jul;59(7):1999–2006. doi: 10.1128/aem.59.7.1999-2006.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adams M. R., Little C. L., Easter M. C. Modelling the effect of pH, acidulant and temperature on the growth rate of Yersinia enterocolitica. J Appl Bacteriol. 1991 Jul;71(1):65–71. [PubMed] [Google Scholar]
  4. Besser R. E., Lett S. M., Weber J. T., Doyle M. P., Barrett T. J., Wells J. G., Griffin P. M. An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157:H7 in fresh-pressed apple cider. JAMA. 1993 May 5;269(17):2217–2220. [PubMed] [Google Scholar]
  5. Brocklehurst T. F., Lund B. M. The influence of pH, temperature and organic acids on the initiation of growth of Yersinia enterocolitica. J Appl Bacteriol. 1990 Sep;69(3):390–397. doi: 10.1111/j.1365-2672.1990.tb01529.x. [DOI] [PubMed] [Google Scholar]
  6. Cole M. B., Jones M. V., Holyoak C. The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes. J Appl Bacteriol. 1990 Jul;69(1):63–72. doi: 10.1111/j.1365-2672.1990.tb02912.x. [DOI] [PubMed] [Google Scholar]
  7. Glass K. A., Loeffelholz J. M., Ford J. P., Doyle M. P. Fate of Escherichia coli O157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Appl Environ Microbiol. 1992 Aug;58(8):2513–2516. doi: 10.1128/aem.58.8.2513-2516.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Griffin P. M., Tauxe R. V. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev. 1991;13:60–98. doi: 10.1093/oxfordjournals.epirev.a036079. [DOI] [PubMed] [Google Scholar]
  9. Houtsma P. C., Kusters B. J., de Wit J. C., Rombouts F. M., Zwietering M. H. Modelling growth rates of Listeria innocua as a function of lactate concentration. Int J Food Microbiol. 1994 Dec;24(1-2):113–123. doi: 10.1016/0168-1605(94)90111-2. [DOI] [PubMed] [Google Scholar]
  10. Leyer G. J., Wang L. L., Johnson E. A. Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. Appl Environ Microbiol. 1995 Oct;61(10):3752–3755. doi: 10.1128/aem.61.10.3752-3755.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McMeekin T. A., Chandler R. E., Doe P. E., Garland C. D., Olley J., Putro S., Ratkowsky D. A. Model for combined effect of temperature and salt concentration/water activity on the growth rate of Staphylococcus xylosus. J Appl Bacteriol. 1987 Jun;62(6):543–550. doi: 10.1111/j.1365-2672.1987.tb02687.x. [DOI] [PubMed] [Google Scholar]
  12. McMeekin T. A., Ross T. Shelf life prediction: status and future possibilities. Int J Food Microbiol. 1996 Nov;33(1):65–83. doi: 10.1016/0168-1605(96)01138-5. [DOI] [PubMed] [Google Scholar]
  13. Rosso L., Lobry J. R., Bajard S., Flandrois J. P. Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth. Appl Environ Microbiol. 1995 Feb;61(2):610–616. doi: 10.1128/aem.61.2.610-616.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Salmond C. V., Kroll R. G., Booth I. R. The effect of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol. 1984 Nov;130(11):2845–2850. doi: 10.1099/00221287-130-11-2845. [DOI] [PubMed] [Google Scholar]
  15. Sutherland J. P., Bayliss A. J., Braxton D. S. Predictive modelling of growth of Escherichia coli O157:H7: the effects of temperature, pH and sodium chloride. Int J Food Microbiol. 1995 Mar;25(1):29–49. doi: 10.1016/0168-1605(94)00082-h. [DOI] [PubMed] [Google Scholar]
  16. Wijtzes T., McClure P. J., Zwietering M. H., Roberts T. A. Modelling bacterial growth of Listeria monocytogenes as a function of water activity, pH and temperature. Int J Food Microbiol. 1993 Apr;18(2):139–149. doi: 10.1016/0168-1605(93)90218-6. [DOI] [PubMed] [Google Scholar]
  17. Wijtzes T., de Wit J. C., In Huis, Van't R., Zwietering M. H. Modelling Bacterial Growth of Lactobacillus curvatus as a Function of Acidity and Temperature. Appl Environ Microbiol. 1995 Jul;61(7):2533–2539. doi: 10.1128/aem.61.7.2533-2539.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES