Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2384–2390. doi: 10.1128/aem.63.6.2384-2390.1997

Sensitive detection of a novel class of toluene-degrading denitrifiers, Azoarcus tolulyticus, with small-subunit rRNA primers and probes.

J Zhou 1, A V Palumbo 1, J M Tiedje 1
PMCID: PMC168532  PMID: 9172359

Abstract

Azoarcus tolulyticus is a new class of widely distributed toluene-degrading denitrifiers of potential importance in remediating benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated environments. To detect these organisms in the environment, 16S rRNA gene-based phylogenetic probes were developed. Two sets of specific PCR amplification primers and two oligonucleotide hybridization probes were designed and tested against both closely and distantly related environmental isolates. All of these primers and probes were specific to the species A. tolulyticus. The sensitivity of the PCR amplification primer sets was evaluated with DNA isolated from A. tolulyticus Tol-4 pure culture and from sterile soils seeded with a known number of Tol-4 and Escherichia coli cells. These primer sets were able to detect 1 fg to 1 pg of template DNA from the pure culture and 1.11 x 10(2) to 1.1 x 10(8) Tol-4 cells per g of soil in the presence of 1.56 x 10(10) E. coli cells. These two PCR amplification primers were also successfully tested at two field sites. The primers identified the A. tolulyticus strains among the toluene-degrading bacteria isolated from a low-O2-high-NO(3)- aquifer at Moffett Field, Calif. Also, the presence of A. tolulyticus was detected in the groundwater samples from a BTEX-contaminated aquifer at an industrial site in Detroit, Mich., which showed anaerobic toluene degradation.

Full Text

The Full Text of this article is available as a PDF (300.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anders H. J., Kaetzke A., Kämpfer P., Ludwig W., Fuchs G. Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol. 1995 Apr;45(2):327–333. doi: 10.1099/00207713-45-2-327. [DOI] [PubMed] [Google Scholar]
  2. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol. 1981 May 15;148(2):107–127. doi: 10.1016/0022-2836(81)90508-8. [DOI] [PubMed] [Google Scholar]
  3. Chee-Sanford J. C., Frost J. W., Fries M. R., Zhou J., Tiedje J. M. Evidence for acetyl coenzyme A and cinnamoyl coenzyme A in the anaerobic toluene mineralization pathway in Azoarcus tolulyticus Tol-4. Appl Environ Microbiol. 1996 Mar;62(3):964–973. doi: 10.1128/aem.62.3.964-973.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. D'Aquila R. T., Bechtel L. J., Videler J. A., Eron J. J., Gorczyca P., Kaplan J. C. Maximizing sensitivity and specificity of PCR by pre-amplification heating. Nucleic Acids Res. 1991 Jul 11;19(13):3749–3749. doi: 10.1093/nar/19.13.3749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fries M. R., Hopkins G. D., McCarty P. L., Forney L. J., Tiedje J. M. Microbial Succession during a Field Evaluation of Phenol and Toluene as the Primary Substrates for Trichloroethene Cometabolism. Appl Environ Microbiol. 1997 Apr;63(4):1515–1522. doi: 10.1128/aem.63.4.1515-1522.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fries M. R., Zhou J., Chee-Sanford J., Tiedje J. M. Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol. 1994 Aug;60(8):2802–2810. doi: 10.1128/aem.60.8.2802-2810.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. He Q., Marjamäki M., Soini H., Mertsola J., Viljanen M. K. Primers are decisive for sensitivity of PCR. Biotechniques. 1994 Jul;17(1):82, 84, 86-7. [PubMed] [Google Scholar]
  9. Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
  10. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. The ribosomal database project. Nucleic Acids Res. 1993 Jul 1;21(13):3021–3023. doi: 10.1093/nar/21.13.3021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mahony J. B., Luinstra K. E., Sellors J. W., Chernesky M. A. Comparison of plasmid- and chromosome-based polymerase chain reaction assays for detecting Chlamydia trachomatis nucleic acids. J Clin Microbiol. 1993 Jul;31(7):1753–1758. doi: 10.1128/jcm.31.7.1753-1758.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rychlik W., Rhoads R. E. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 1989 Nov 11;17(21):8543–8551. doi: 10.1093/nar/17.21.8543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Thiem S. M., Krumme M. L., Smith R. L., Tiedje J. M. Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer. Appl Environ Microbiol. 1994 Apr;60(4):1059–1067. doi: 10.1128/aem.60.4.1059-1067.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tsai Y. L., Olson B. H. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl Environ Microbiol. 1992 Feb;58(2):754–757. doi: 10.1128/aem.58.2.754-757.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tsai Y. L., Olson B. H. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol. 1992 Jul;58(7):2292–2295. doi: 10.1128/aem.58.7.2292-2295.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zhou J. Z., Tiedje J. M. Gene transfer from a bacterium injected into an aquifer to an indigenous bacterium. Mol Ecol. 1995 Oct;4(5):613–618. doi: 10.1111/j.1365-294x.1995.tb00261.x. [DOI] [PubMed] [Google Scholar]
  18. Zhou J., Bruns M. A., Tiedje J. M. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996 Feb;62(2):316–322. doi: 10.1128/aem.62.2.316-322.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zhou J., Fries M. R., Chee-Sanford J. C., Tiedje J. M. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol. 1995 Jul;45(3):500–506. doi: 10.1099/00207713-45-3-500. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES