Abstract
In the marine cyanobacterium Synechococcus sp. strain WH7803, PstS is a 32-kDa cell wall-associated phosphate-binding protein specifically synthesized under conditions of restricted inorganic phosphate (P1) availability (D. J. Scanlan, N. H. Mann, and N. G. Carr, Mol. Microbiol. 10:181-191, 1993). We have assessed its use as a potential diagnostic marker for the P status of photosynthetic picoplankton. Expression of PstS in Synechococcus sp. strain WH7803 was observed when the P1 concentration fell below 50 nM, demonstrating that the protein is induced at concentrations of P1 typical of oligotrophic conditions. PstS expression could be specifically detected by use of standard Western blotting (immunoblotting) techniques in natural mesocosm samples under conditions in which the N/P ratio was artificially manipulated to force P depletion. In addition, we have developed an immunofluorescence assay that can detect PstS expression in single Synechococcus cells both in laboratory cultures and natural samples. We show that antibodies raised against PstS cross-react with P-depleted Prochlorococcus cells, extending the use of these antibodies to both major groups of prokaryotic photosynthetic picoplankton. Furthermore, DNA sequencing of a Prochlorococcus pstS homolog demonstrated high amino acid sequence identity (77%) with the marine Synechococcus sp. strain WH7803 protein, including those residues in Escherichia coli PstS known to be directly involved in phosphate binding.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aiba H., Mizuno T. A novel gene whose expression is regulated by the response-regulator, SphR, in response to phosphate limitation in Synechococcus species PCC7942. Mol Microbiol. 1994 Jul;13(1):25–34. doi: 10.1111/j.1365-2958.1994.tb00399.x. [DOI] [PubMed] [Google Scholar]
- Aiba H., Nagaya M., Mizuno T. Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal-transduction protein families: implication in the adaptive response to phosphate limitation. Mol Microbiol. 1993 Apr;8(1):81–91. doi: 10.1111/j.1365-2958.1993.tb01205.x. [DOI] [PubMed] [Google Scholar]
- Ammerman J. W., Azam F. Characteristics of Cyclic AMP Transport by Marine Bacteria. Appl Environ Microbiol. 1987 Dec;53(12):2963–2966. doi: 10.1128/aem.53.12.2963-2966.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cembella A. D., Antia N. J., Harrison P. J. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 1. Crit Rev Microbiol. 1984;10(4):317–391. doi: 10.3109/10408418209113567. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
- Greene R. M., Geider R. J., Kolber Z., Falkowski P. G. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol. 1992 Oct;100(2):565–575. doi: 10.1104/pp.100.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itaya K., Ui M. A new micromethod for the colorimetric determination of inorganic phosphate. Clin Chim Acta. 1966 Sep;14(3):361–366. doi: 10.1016/0009-8981(66)90114-8. [DOI] [PubMed] [Google Scholar]
- Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996 Jun 30;3(3):109–136. doi: 10.1093/dnares/3.3.109. [DOI] [PubMed] [Google Scholar]
- Kolber Z., Zehr J., Falkowski P. Effects of Growth Irradiance and Nitrogen Limitation on Photosynthetic Energy Conversion in Photosystem II. Plant Physiol. 1988 Nov;88(3):923–929. doi: 10.1104/pp.88.3.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mann N. H., Scanlan D. J. The SphX protein of Synechococcus species PCC 7942 belongs to a family of phosphate-binding proteins. Mol Microbiol. 1994 Nov;14(3):595–596. doi: 10.1111/j.1365-2958.1994.tb02192.x. [DOI] [PubMed] [Google Scholar]
- Palenik B., Koke J. A. Characterization of a nitrogen-regulated protein identified by cell surface biotinylation of a marine phytoplankton. Appl Environ Microbiol. 1995 Sep;61(9):3311–3315. doi: 10.1128/aem.61.9.3311-3315.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray J. M., Bhaya D., Block M. A., Grossman A. R. Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942. J Bacteriol. 1991 Jul;173(14):4297–4309. doi: 10.1128/jb.173.14.4297-4309.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scanlan D. J., Mann N. H., Carr N. G. The response of the picoplanktonic marine cyanobacterium Synechococcus species WH7803 to phosphate starvation involves a protein homologous to the periplasmic phosphate-binding protein of Escherichia coli. Mol Microbiol. 1993 Oct;10(1):181–191. doi: 10.1111/j.1365-2958.1993.tb00914.x. [DOI] [PubMed] [Google Scholar]
- Van Cappellen P., Ingall E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science. 1996 Jan 26;271:493–496. doi: 10.1126/science.271.5248.493. [DOI] [PubMed] [Google Scholar]
- Vaulot D., Lebot N., Marie D., Fukai E. Effect of Phosphorus on the Synechococcus Cell Cycle in Surface Mediterranean Waters during Summer. Appl Environ Microbiol. 1996 Jul;62(7):2527–2533. doi: 10.1128/aem.62.7.2527-2533.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner K. U., Masepohl B., Pistorius E. K. The cyanobacterium Synechococcus sp. strain PCC 7942 contains a second alkaline phosphatase encoded by phoV. Microbiology. 1995 Dec;141(Pt 12):3049–3058. doi: 10.1099/13500872-141-12-3049. [DOI] [PubMed] [Google Scholar]
- Wyman M., Gregory R. P., Carr N. G. Novel Role for Phycoerythrin in a Marine Cyanobacterium, Synechococcus Strain DC2. Science. 1985 Nov 15;230(4727):818–820. doi: 10.1126/science.230.4727.818. [DOI] [PubMed] [Google Scholar]